
Translating from F* to C
a progress report

P. Wang
MIT

K. Bharghavan, J-K. Zinzindohoué
INRIA

A. Anand
Cornell

C. Fournet, B. Parno, J. Protzenko,
A. Rastogi, N. Swamy
Microsoft

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 1 / 26



A fashion phenomenon?

The hot new thing these days is…

translating to C!

Fig 1. – Two hipster C hackers with beards

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 2 / 26



A fashion phenomenon?

The hot new thing these days is…

translating to C!

Fig 1. – Two hipster C hackers with beards

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 2 / 26



Bedrock!

• deep embedding of C
into Coq

• prove functional
correctness (and
memory safety) using
manual proofs

• data structures, threads
(first-class pointers)

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 3 / 26



Cogent!

At ICFP this year.

• a DSL with linear types,
polymorphism

• generates a shallow
embedding into
Isabelle + proof

• systems code (e.g. file
systems)

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 4 / 26



Others

• Idris has a C backend + experimental C++11 backend

• Ivory is a DSL in Haskell that generates memory-safe C
code

• F* wants to be hip. F* will generate C too.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 5 / 26



Others

• Idris has a C backend + experimental C++11 backend

• Ivory is a DSL in Haskell that generates memory-safe C
code

• F* wants to be hip. F* will generate C too.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 5 / 26



We actually have reasons!

Everest: VERifiEd Secure Transport

Even before recent headline-grabbing attacks like
HeartBleed, FREAK, and Logjam, entire papers were
published just to summarize all of the academically
“interesting” ways TLS implementations have been
broken, without even getting into “boring”
vulnerabilities like buffer overflows and other basic
coding mistakes.

Reminder: TLS = « the S in HTTPS »

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 6 / 26



Everest

• A collaboration with our friends at INRIA and MSR
Cambridge

• Prove TLS cryptographically sound

• Generate shippable code

Yes, this is ambitious.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 7 / 26



Everest

• A collaboration with our friends at INRIA and MSR
Cambridge

• Prove TLS cryptographically sound

• Generate shippable code

Yes, this is ambitious.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 7 / 26



Back to C; why😱?!

’FACE SCREAMING IN FEAR’ (U+1F631)

Performance Cryptography = hand-optimized machine
integers. OCaml = n− 1 bits.

Social reasons OCaml runtime = hard sell.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 8 / 26



The architecture

KreMLin

F* Dafny

C/C++
External
World



Things to cover

1 Theory

2 F* code & libraries

3 Overview of the tool & demo

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 10 / 26



An overview of the theory



The pipeline

F* Low*
erasure

extraction
C*

simulation

C

p
ro

o
f

😩 todo!

😩 todo!

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 12 / 26



The pipeline

F* Low*
erasure

extraction
C*

simulation

C

p
ro

o
f

😩 todo!

😩 todo!

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 12 / 26



The pipeline

F* Low*
erasure

extraction
C*

simulation

C

p
ro

o
f

😩 todo!

😩 todo!

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 12 / 26



Low*

Low* is a low-level, first-order fragment of F*.

• Offers a limited subset of C’s power: stack-allocated
buffers and locally mutable variables

• Code is written against a HyperStack library

• Suitable pre- and post-conditions ensure memory safety

• If the code ends up in Low*, it can be translated to C.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 13 / 26



A word about Low*

• An expression
language

• Semantics by
substitution

• Frame = buffer id
→ list of values

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 14 / 26



A word about C*

• A statement
language

• Semantics with
continuation
contexts
(telescope)

• Frame = location
to values +
immutable values

• Pointer arithmetic
for buffers

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 15 / 26



Low* to C*

For any Low* expr. e and C* statements s = trans(e):

safety: if e is safe, then s is safe.

refinement:

e ⇝n ∃ e′

≈R ≈R
s ⇝ s′

Any reduction step of the C* program corresponds to an
admissible sequence of reduction steps for the Low* program.

The C* program only does “things” allowed by the original
semantics of Low*.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 16 / 26



Low* to C*

For any Low* expr. e and C* statements s = trans(e):

safety: if e is safe, then s is safe.

refinement:

e ⇝n ∃ e′

≈R ≈R
s ⇝ s′

Any reduction step of the C* program corresponds to an
admissible sequence of reduction steps for the Low* program.

The C* program only does “things” allowed by the original
semantics of Low*.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 16 / 26



Low* to C*

For any Low* expr. e and C* statements s = trans(e):

safety: if e is safe, then s is safe.

refinement:

e ⇝n ∃ e′

≈R ≈R
s ⇝ s′

Any reduction step of the C* program corresponds to an
admissible sequence of reduction steps for the Low* program.

The C* program only does “things” allowed by the original
semantics of Low*.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 16 / 26



Low* to C*

But, this is hard (n = 0; stuttering). Instead, we use the
CompCert style:

e ⇝ e′

≈R ≈R
s ⇝n ∃ s′

Works only if C* is deterministic (yes) and Low* is safe (yes).

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 17 / 26



Final word on the theory

Right now: safety and observational equivalence of traces

Next: side-channel resistance using parametricity

α, x : α, I ⊢ e [v1/x][τ/α]e
α, x : α, I ⊢ v1 : τ ⇒ ≈

α, x : α, I ⊢ v2 : τ [v2/x][τ/α]e

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 18 / 26



A look at some code



The memory model

• A list of stack frames

• The tip is the current stack frame

• Each stack frame maps locations to values

• Special well-parenthesized push_frame and pop_frame

let test1 (_: unit): Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame ();
let b = Buffer.create 21l 2ul in
print_int32 (index b 0ul +%^ index b 1ul);
pop_frame ()

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 20 / 26



The Stack effect

let equal_domains (m0:mem) (m1:mem) =
m0.tip = m1.tip /\
Set.equal (Map.domain m0.h) (Map.domain m1.h) /\
(∀ r. Map.contains m0.h r ==>
TSet.equal
(Heap.domain (Map.sel m0.h r))
(Heap.domain (Map.sel m1.h r)))

effect Stack (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))) =
STATE a (fun (p:st_post a) (h:mem) ->
pre h /\ (∀ a h1.
(pre h /\ post h a h1 /\ equal_domains h h1) ==> p a h1))

Preserves the layout of the stack and doesn’t allocate in any
frame.

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 21 / 26



A trickier example

A function in Stack requires push_region and pop_region to
allocate. What about code re-use?

let test2 (_: unit):
StackInline (Buffer.buffer Int32.t)
(requires (fun h0 -> is_stack_region h0.tip))
(ensures (fun h0 b h1 -> live h1 b /\ Buffer.length b = 2))

=
let b = Buffer.create 0l 2ul in
upd b 0ul (C.rand ());
upd b 1ul (C.rand ());
b

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 22 / 26



The StackInline effect

let inline_stack_inv h h’ : GTot Type0 =
(* The frame invariant is enforced *)
h.tip = h’.tip
(* The heap structure is unchanged *)
/\ Map.domain h.h == Map.domain h’.h
(* Any region that is not the tip has not seen any allocations *)
/\ (∀ (r:HH.rid). (r <> h.tip /\ Map.contains h.h r)

==> Heap.domain (Map.sel h.h r) == Heap.domain (Map.sel h’.h r))

effect StackInline (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))) =
STATE a (fun (p:st_post a) (h:mem) ->
pre h /\ (∀ a h1.
(pre h /\ post h a h1 /\ inline_stack_inv h h1) ==> p a h1))

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 23 / 26



The tool: KreMLin

F*

Kremlin

GCC/Clang

F* Erased*

KremlinLow*C*C

Exe

erasure

extraction

o
u
t.krm

l

simplify

eventuallytranslatepprint

co
m
p
ile

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 24 / 26



Demo time!



Conclusion

Our approach: a shallow embedding of C into F* with a
curated set of primitives

Our flagship code: 12,000 lines of F* code (bignum, curve,
Chacha20, Poly1305, AEAD)

Our tool: KreMLin (open-source! go and use it for
Coq too?)

Soon: HACL* (High Assurance Crypto Libraries)

Hopefully soon: extract more code, including miTLS

J. Protzenko et al. — ICFP’16 Translating from F* to C: a progress report Thursday 22nd , 2016 26 / 26


