
Verified low-level programming
embedded in F∗

Jonathan Protzenko Microsoft Research

Jean-Karim Zinzindohoué INRIA Paris

Aseem Rastogi Microsoft Research

Tahina Ramananandro Microsoft Research

Peng Wang MIT CSAIL

Santiago Zanella-Béguelin Microsoft Research

Antoine Delignat-Lavaud Microsoft Research

Cătălin Hriţcu INRIA Paris

Karthikeyan Bhargavan INRIA Paris

Cédric Fournet Microsoft Research

Nikhil Swamy Microsoft Research

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 1 / 31

Everest:
Deploying Verified-Secure Implementations in the
HTTPS Ecosystem

Within HTTPS: the TLS protocol

TLS stands for transport layer security.

TLS is made of up of two halves:

• the protocol layer

• the record layer

Specifically, the record layer contains the cryptographic
routines.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 3 / 31

A sample cryptographic operation: Poly1305

Poly1305 is a message authentication code.

MAC(k,m, w⃗) = m+

|w⃗|∑
i=1

wi × ki

It authenticates the data w⃗ by:

• encoding it as a polynomial in the prime field 2130 − 5

• evaluating it at a random point k (first part of the key)

• masking the result with m (second part of the key)

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 4 / 31

A sample cryptographic operation: Poly1305

Poly1305 is a message authentication code.

MAC(k,m, w⃗) = m+

|w⃗|∑
i=1

wi × ki

A typical 64-bit arithmetic implementation:

• represents elements of the prime field (p = 2130 − 5) using
three limbs holding 42 + 44 + 44 bits in 64-bit registers

• uses (a× 2130 + b)%p = (a+ 4a+ b)%p for reductions

• unfolds the loop

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 4 / 31

A simple cryptographic operation: Poly1305?

These heavily optimized C implementations have bugs.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 5 / 31

A simple cryptographic operation: Poly1305?

These heavily optimized C implementations have bugs.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 5 / 31

A simple cryptographic operation: Poly1305?

These heavily optimized C implementations have bugs.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 5 / 31

A simple cryptographic operation: Poly1305?

These heavily optimized C implementations have bugs.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 5 / 31

Specifiying, programming and verifying Poly1305

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 6 / 31

Low*	Poly1305	
compiled	to	C

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 7 / 31

The design of Low∗

High-level verification for low-level code

For code, the programmer:

• opts in the Low∗effect to model the C stack and heap;

• uses low-level libraries for arrays and structs;

• leverages combinator libraries to get C loops;

• meta-programs first-order code;

• relies on data types sparingly.

For proofs and specs, the programmer:

• can use all of F∗,

• prove memory safety, correctness, crypto games, relying
on

• erasure to yield a first-order program.

Motto: the code is low-level but the verification is not.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 9 / 31

High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))) =
STATE a (fun (p:st_post a) (h:mem) ->
pre h /\ (∀ a h1.
(pre h /\ post h a h1 /\ equal_domains h h1) ==> p a h1))

let equal_domains (m0:mem) (m1:mem) =
m0.tip = m1.tip
/\ Set.equal (Map.domain m0.h) (Map.domain m1.h)
/\ (forall r. Map.contains m0.h r ==>
Heap.equal_dom (Map.sel m0.h r) (Map.sel m1.h r))

Preserves the layout of the stack and doesn’t allocate in any
caller frame.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 10 / 31

High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))) =
STATE a (fun (p:st_post a) (h:mem) ->
pre h /\ (∀ a h1.
(pre h /\ post h a h1 /\ equal_domains h h1) ==> p a h1))

let equal_domains (m0:mem) (m1:mem) =
m0.tip = m1.tip
/\ Set.equal (Map.domain m0.h) (Map.domain m1.h)
/\ (forall r. Map.contains m0.h r ==>
Heap.equal_dom (Map.sel m0.h r) (Map.sel m1.h r))

preservation of the stack structure

Preserves the layout of the stack and doesn’t allocate in any
caller frame.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 10 / 31

High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))) =
STATE a (fun (p:st_post a) (h:mem) ->
pre h /\ (∀ a h1.
(pre h /\ post h a h1 /\ equal_domains h h1) ==> p a h1))

let equal_domains (m0:mem) (m1:mem) =
m0.tip = m1.tip
/\ Set.equal (Map.domain m0.h) (Map.domain m1.h)
/\ (forall r. Map.contains m0.h r ==>
Heap.equal_dom (Map.sel m0.h r) (Map.sel m1.h r))the tip remains the same

Preserves the layout of the stack and doesn’t allocate in any
caller frame.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 10 / 31

High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun h0 z h1 -> live h0 b /\ h1 == h0
/\ z == Seq.index (as_seq h0 b) (v n)))

let index #a b n =
let s = !b.content in
Seq.index s (v b.idx + v n)

We swap this F∗ model with a low-level implementation.
buffer int becomes int* and index b i becomes b[i].

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 11 / 31

High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun h0 z h1 -> live h0 b /\ h1 == h0
/\ z == Seq.index (as_seq h0 b) (v n)))

let index #a b n =
let s = !b.content in
Seq.index s (v b.idx + v n)

spatial
safety

We swap this F∗ model with a low-level implementation.
buffer int becomes int* and index b i becomes b[i].

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 11 / 31

High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun h0 z h1 -> live h0 b /\ h1 == h0
/\ z == Seq.index (as_seq h0 b) (v n)))

let index #a b n =
let s = !b.content in
Seq.index s (v b.idx + v n)

temporal
safety

We swap this F∗ model with a low-level implementation.
buffer int becomes int* and index b i becomes b[i].

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 11 / 31

The formalization of Low∗ to Clight

With a diagram

F∗

Kremlin

GCC/Clang/CompCert/MSVC

EMF∗ Low∗

1st-order EMF∗

λow∗C∗Clight

.c Exe

≈ erase

partial ≈

hoist ≈

≈≈

print

compile

Disclaimer: these steps are supported by hand-written proofs.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 13 / 31

Side-channel resistance

What are we protecting against

• We want to guard against some memory and timing
side-channels

• Our secret data is at an abstract type

• By using abstraction, we can control what operations we
allow on secret data

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 15 / 31

Abstraction to the rescue

Our module for secret integers exposes a handful of audited,
carefully-crafted functions that we trust have
secret-independent traces.

(* limbs only ghostly revealed as numbers *)
val v : limb -> Ghost nat

val eq_mask: x:limb -> y:limb ->
Tot (z:limb{if v x <> v y then v z = 0 else v z = pow2 26 - 1})

By construction, the programmer cannot use a limb for
branching or array accesses.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 16 / 31

What we show

We model trace events as part of our reduction.

ℓ ::= · | read(b,n,
⇀
f) | write(b,n,

⇀
f) | brT | brF | ℓ1, ℓ2

Note: this does not rule out ALL side channels!

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 17 / 31

Secret-independence: an intuition

A type-indexed relation v1 ≡τ v2 over values:

n ≡int n
v1 ≡a v2
. . .

Intuition: terms are related if they only differ on sub-terms at
secret types.

Main theorem: functions, when applied to related values in
related stores, have related reductions and emit the same
traces.

Note: this only goes up to CompCert Clight

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 18 / 31

The KreMLin tool

A compiler from F* to readable C

The KreMLin facts:

• about 12,000 lines of OCaml

• carefully engineered to generate readable C code

• essential for integration into existing software.

Destroys modularity upon request for the sake of
performance.

• Monomorphization

• Inlining

• Recombining modules (static inline)
• Recombining functions (intra-procedural optimizations)

So far, about 50k lines of C generated.

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 20 / 31

Evaluation

A word on HACL*

Our flagship crypto algorithms library. Available standalone,
as an OpenSSL engine, or via the NaCl API.

• Implements Chacha20, Salsa20, Curve25519, X25519,
Poly1305, SHA-2, HMAC

• 7000 lines of C code

• 23,000 lines of F∗ code

• Performance is comparable to existing C code (not ASM)

• Some bits are in the Firefox web browser!

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, Benjamin Beurdouche
HACL*: A Verified Modern Cryptographic Library
CCS’17

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 22 / 31

10s

0

50000

1 · 105

1.5 · 105

input bytes

X
2
5
5
19

o
p
s/
s
(h
ig
h
e
r
is
b
e
tt
e
r)

HACL∗ OpenSSL

16 64 256 1024 8192 16384

0

5 · 105

1 · 106

1.5 · 106

2 · 106

2.5 · 106

input bytes

C
h
aC

h
a2

0
10

0
0
s
o
f
b
yt
e
s/
s
(h
ig
h
e
r
is
b
e
tt
e
r)

HACL∗ OpenSSL

16 64 256 1024 8192 16384

0

5 · 105

1 · 106

1.5 · 106

2 · 106

2.5 · 106

input bytes

C
h
aC

h
a2

0
10

0
0
s
o
f
b
yt
e
s/
s
(h
ig
h
e
r
is
b
e
tt
e
r)

HACL∗ HACL∗-vec OpenSSL OpenSSL ASM

A word on Vale

Vale: Verified Assembly Language for Everest

Some of the performance gap may be closed using intrinsics.
But for CPU-specific instructions: use a dedicated language.

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan
M. Leino, Jacob R. Lorch, Bryan Parno, Ashay Rane,
Srinath Setty, Laure Thompson
Vale: Verifying High-Performance Cryptographic
Assembly Code
USENIX’17

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 26 / 31

A word on the TLS record layer

We have declared victory on the TLS record layer. It uses
HACL*.

Full cryptographic games and proofs.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric
Fournet, Markulf Kohlweiss, Jianyang Pan, Jonathan
Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago
Zanella-Beguelin, Jean-Karim Zinzindohoue.
Implementing and Proving the TLS 1.3 Record Layer
Oakland (S&P) 17

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 27 / 31

16 64 256 1024 8192 16384

0

5 · 105

1 · 106

1.5 · 106

input bytes

A
E
A
D

10
0
0
s
o
f
b
yt
e
s/
s
(h
ig
h
e
r
is
b
e
tt
e
r)

HACL∗ OpenSSL OpenSSL ASM

Future plans

• HACL*
• more algorithms (P-curves)
• more integration (e.g. NSS)

• miTLS, our TLS library in F∗ (WIP)
• currently available as an alternate SSL backend for curl or
within Nginx

• finish lowering the protocol layer into Low∗

• low-level parsers (e.g. ASN.1) (WIP)

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 29 / 31

Your future plans

It’s all on GitHub!

• https://www.github.com/FStarLang/FStar
• https://www.github.com/FStarLang/kremlin
• https://www.github.com/mitls/mitls-fstar
• https://www.github.com/mitls/hacl-star
• https://www.github.com/project-everest/vale

J. Protzenko et al. — ICFP’17 Verified low-level programming embedded in F∗ September 5th , 2017 30 / 31

https://www.github.com/FStarLang/FStar
https://www.github.com/FStarLang/kremlin
https://www.github.com/mitls/mitls-fstar
https://www.github.com/mitls/hacl-star
https://www.github.com/project-everest/vale

Thanks. Questions?

