
Implementing Real-Time Collaboration
in TouchDevelop using AST Merges

Jonathan Protzenko Sebastian
Burckhardt Michał Moskal

Microsoft Research, USA
{sburckha,micmo,protz}@microsoft.com

Jedidiah McClurg
University of Colorado Boulder, USA

jedidiah.mcclurg@colorado.edu

Abstract
Collaborating on a piece of code is notoriously difficult
when the number of people involved goes above 1. In par-
ticular, every computer programmer dreads the “merge con-
flict”, a brutal, unforgiving experience, where they must rec-
oncile their changes with someone else’s.

If offline collaboration is already so painful, real-time col-
laboration seems even less of an option. It turns out, though,
that by reasoning on changes at the level of the program
AST, rather than the program text, we can devise a new
conflict-free merge algorithm. The algorithm is particularly
well-suited to real-time collaboration: we implemented it in
the TouchDevelop web programming environment and dub
the algorithm diffTree.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Integrated environments

Keywords Merge, diff, collaborative editing

1. A New Merge for New Times
TouchDevelop [1] is a web-based programming environ-
ment; it has been used over the past few years as an ex-
perimental testbed. Indeed, the language is small and self-
contained, and the user base is significant enough that we
can conduct experiments.

The TouchDevelop editor is syntax directed; this means
that statements, such as conditionals and loops, are always
well-formed; the user can edit the condition or the body of
an if but cannot delete the if token by itself. Expressions,
on the other hand, are free-form and are seen as series of to-
kens. The editor is thus AST-aware, in the sense that moves,

deletions and renamings operate on AST nodes rather than
mere text sections.

In this context, many changes are semantic rather than
syntactic; renaming a variable merely modifies its declara-
tion node; moving an if statement re-attaches a node to an-
other part of the syntax tree. Furthermore, some changes that
would be conflicts using a text merge are no longer con-
flicts in this new setting: renaming a variable and moving
its uses are two well-separated operations (on the defini-
tion node and on the use node, respectively); similarly, mov-
ing a while loop and reordering statements in its body are
two non-conflicting operations (one is about moving a node,
while another one is about reordering the children of said
node).

Our merge algorithm is designed to be conflict-free; the
user is never presented with the fearful three-way merge-
resolution window. This does mean we make arbitrary deci-
sions; the main use-case for our algorithm, though, is real-
time collaboration, where visual clues and inter-personal co-
ordination, along with the non-conflicting nature of most
refactoring operations, limit the opportunities for arbitrary
decisions.

2. Overview of the AST Merge Algorithm
The algorithm that we implemented for TouchDevelop oper-
ates on a tree representation of the program. A sample pro-
gram is shown in Figure 1; its corresponding tree represen-
tation is shown in Figure 2.

We tag each AST node with a unique identifier (m, n,
. . . ): the editor must preserve these identifiers when moving
nodes around. A reference to a variable (such as x) is trans-
lated to a reference to the corresponding definition node.

Some nodes may be reordered (e.g. two parameters of a
function); some other nodes must not be mixed (e.g. a func-
tion parameter and a statement in the function’s body). To
that effect, we introduce placeholder nodes (dotted) whose
main purpose is to separate unrelated nodes. Finally, we
track the order of the nodes (x+1 is not the same as 1+x) by
remembering the sibling of each node (thin dotted arrows).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MobileDeLi’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3906-3/15/10...
http://dx.doi.org/10.1145/2846661.2846672

25



function incr(x: number) {

var y := x + 1;

return y

}

Figure 1. Sample TouchDevelop program

function

n

n · 1 n · 2

x: number

m

var y

o

o · 1

+

q

m

p

1

r

return

s

s · 1

o

t

Figure 2. Sample tree

ids(TA) ids(TB)

ids(TO)

Figure 3. Determining the nodes of the merged tree

The algorithm takes three trees as an input: the original
tree TO, “my” tree TA, and “their” tree TB . From a high-
level perspective, the algorithm works as follows.

• We first decide which nodes to keep (Figure 2); seeing
our trees as a set of nodes, we take nodes added by A and
B, as well as the original nodes that both A and B agreed
to keep.

• Then, we “re-wire” the nodes by attaching them to their
parents; we follow the “parenting” choices from A; for
nodes that are still not reattached after that, we follow the
choices from B. This operation may create cycles; we
provide a cycle-breaking procedure.

• Once each node is attached to the right parent, we decide
on an order for the siblings; that is, we give a total order
for the transversal dotted arrows. We use a diff3-like
algorithm on the sequence of siblings.

• Finally, we merge properties of the node, such as the
actual name (rather than the internal id) of a variable
binding.

The merge algorithm we describe enjoys the following
properties.

TO

TA TB

T ′
BT

T ′

TO

TA TB

T ′
B

T ′

=

Figure 4. Cumulative property

• If both sides leave a piece of code untouched; it remains
untouched in the output tree.

• If one of the two sides changes a piece of code, the output
tree contains the change.

• If both sides agree on a change, then the output tree
contains an identical change.

• If both sides argue about a change, then A wins.

Furthermore, in the case that both sides operate on dis-
tinct parts of the AST (we say the edits are well-separated),
then the merge enjoys further properties. The first one is the
cumulative property (Figure 4); in version-control lingo, if B
is doing a feature branch, merging it into the master branch
A once or twice has the same net effect. The second one is
associativity (Figure 5).

2.1 An Example
Consider the sample tree from Figure 2. The following
changes are well-separated and enjoy the properties above:

• changing x+1 for 1+x (operates on the subtree of o) and
renaming x into z (operates on the definition node m);

• moving x+1 into the return statement to obtain return x+1

(this is a change in the parent-of relation), and deleting
the definition of y (this deletes the node o).

2.2 Handling Conflicts
When a true conflict happens, an arbitrary decision is made:
we favor A, that is, “our” changes. The rationale is that
when one performs a change, discarding the change would
be confusing

Our user interface provides a variety of mitigation mecha-
nisms to avoid the true situation where people are “fighting”
over a piece of code. We show placeholders in the code that
indicate the location of each user; we offer a chat area so that
people can coordinate; we offer a way to disable synchro-
nization temporarily to polish changes locally before push-
ing them to other users.

3. Generalizing This Approach to Other
Languages

Our method is capable of dealing with well-formed AST
fragments as well as unstructured series of tokens. TouchDe-

26



TO

TBTA TC

T

T ′

TO

TBTA TC

T

T ′

=

Figure 5. Associative property

velop uses the former to represent statements, and the latter
for expressions. This is not a definitive choice: an editor for
a general-purpose language may choose to represent syntac-
tically correct fragments of a program as an AST, and in-
progress, syntactically invalid fragments as a mere series of
tokens.

Indeed, we claim that this approach is generalizable to a
general-purpose language, as long as the editor can parse the
program being edited and transparently tag AST nodes with
an identifier. Naturally, this requires non-trivial support from
the editor: renaming a variable should operate on the defini-
tion node; copy/pasting should preserve identifiers whenever
possible; pretty-printing should make sure that AST changes
received from other participants are beautifully integrated in
the existing editing buffer while not disrupting the rest of the
programming experience.

References
[1] T. Ball, S. Burckhardt, J. de Halleux, M. Moskal, J. Protzenko,

and N. Tillmann. Beyond Open Source: The TouchDevelop
cloud-based integrated development and runtime environment.
In Proceedings of Second International Conference on Mobile
Software Engineering and Systems, MOBILESoft 2015, 2015.
To appear.

27


