
1

The BBC micro:bit Coded by Microsoft Touch Develop
Thomas Ball, Jonathan Protzenko, Judith Bishop, Michał Moskal,

Jonathan de Halleux, Michael Braun
Microsoft Research
One Microsoft Way

Redmond, WA, USA

tball, protz, jbishop, micmo, jhalleux, v-braum @microsoft.com

ABSTRACT

The chance to influence the lives of a million children comes once
in a generation. With the partnership between the BBC and several
technology companies, a small device, the BBC micro:bit will be
given to a million children in the UK in 2016. Moreover, using the
micro:bit will be part of the curriculum. This demo describes the
BBC micro:bit together with its software platform, based on
Microsoft's Touch Develop. The demo will illustrate the
architecture of the micro:bit and the software engineering hurdles
that had to be overcome to enable it to be used by children.
Evaluation of studies of the software platform are available and
early anecdotal evidence of the hardware. A video about the
micro:bit is available at aka.ms/bbcmicrobit.

CCS Concepts

• Hardware~Sensor devices and platforms • Applied
computing~E-learning • Software and its engineering~Compilers

Keywords

K-12 education; BBC micro:bit; Touch Develop, devices, cloud

1. INTRODUCTION
Computer scientists are continually looking at new ways to engage
and retain the interest of young students in the K-12 years. In recent
years, there have been several waves of new initiatives to get and
keep children aged 8-13 (middle school) engaged in computer
science, for example: coding [6], computational thinking [10],
games [11], robots [12] and storytelling [2] All of these are
successful when led by dedicated and qualified teachers.

If a device can be made small enough to be cheaply distributed to
millions of children, and if the accompanying software is engaging,
intuitive and progressive, then there is a chance of making a leap in
capturing the minds of an entire generation. The challenge is how
to scale out an experiment to influence an entire country of
students, or even globally. Two significant success at the coding
level have been:

1 http://www.aka.ms/bbcmicrobit

1. code.org which initially took up the challenge of getting the
K-12 students to code using a variety of online tools, and
subsequently has started training teachers in the USA. [7]

2. CAS (Computing at School) in the UK is an established
community of mainly teachers who create curriculum for
formal computer science courses nationally [3].

There is evidence that students and children are enticed by activities
where they can see, touch and change “the computer”, in addition
to seeing code on a screen, as in .NET Gadgeteer [4]. The growth
of interest in Arduino, Raspberry Pi and other small computers has
been considerable in the developer world. However, rolling these
out in schools presents the two challenges of cost and training.
Gadgets, internet of things, and the maker culture are all attractive
goals, but they need to be at a cost that schools can meet with a low
barrier for entry in terms of skills required by teachers.

On the other hand, any initiative for large scale roll out of a new
wave of computing should acknowledge that children learn and
grown up very fast, so that a progression of tools within the same
basic platform is highly desirable.

Taking up these challenge, a multi-partner initiative led by the
BBC, the UK Department of Education, and including Microsoft,
is providing a million small devices called the BBC micro:bit, to
middle schoolers in the UK in 2016.

This demo describes the device, the programming environment,
design considerations, and early evaluation. As the first paper on
the BBC micro:bit, it also serves as a landmark and reference for
interested academics and teachers to join the movement.
Specifically, the demo addresses the software engineering of
Microsoft's Touch Develop platform, and how it was adapted to
work on a very small device. There is also an accompanying video1.

2. THE BBC micro:bit
The BBC micro:bit2 is a pocket-sized, codeable computer, designed
to allow children to get creative with technology. The BBC

2 https://www.microsoft.co.uk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICSE '16 Companion, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4205-6/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2889160.2889179

Figure 1 The BBC micro:bit front and back

2

announced the micro:bit on July 7, 2015, teachers were trained
from August 2015, and devices were made available to schools
from February 2016.

The micro:bit measures 4cm by 5cm and is available in a range of
colours. Its design is intended to make it fun and easy to use.
Something simple can be coded in seconds – like lighting up its
LEDs to display a pattern – with little prior knowledge of
computing. The emphasis is on imagination and creativity.

The micro:bit is powered by an ARM Cortex-M0 Processor3 and
has 256K non-volatile flash (for program and static data) and 16K
volatile RAM (for stack, heap). It connects to other devices,
sensors, kits and objects, and is intended as a companion rather than
a competitor to devices such as Arduino, Galileo, Kano, littleBits
and Raspberry Pi, acting as a spring-board to more complex
learning. Key features of the micro:bit include:

• 25 red LEDs to light up, flash messages, create games and
invent digital stories

• Two programmable buttons to provide input;

• An on-board motion detector or ‘accelerometer’ to detect
forces acting on the device.

• A built-in compass or ‘magnetometer’ to sense direction.

• Bluetooth Smart Technology to connect other micro:bits and
devices, kits, phones, tablets, cameras and so on;

• I2C/SPI capabilities to work with any other sensor or display;

• Five Input and Output (I/O) rings to connect the micro:bit
to devices or sensors using crocodile clips or 4mm banana
plug to power devices such as robots and motors.

3. PROGRAMMING THE micro:bit
To bring the BBC micro:bit to life, Microsoft developed an
enhanced version of their popular Touch Develop4 web application
and hosting service. All micro:bits share a dedicated website on
Microsoft Azure and users can choose from a range of online code
editors available from most modern web browsers.

Microsoft supplied two languages/editors – Touch Develop, a
semi-structured text-based language, and the Block Editor, a
graphical coding language. The Touch Develop web app supports
all the code editors built for the micro:bit, runs the micro:bit
simulator, and compiles programs to ARM machine code.
Advanced users can use C++ to directly program against the run-
time system and interface with not-yet-supported hardware sensors.

3.1 Languages, Editors, Compilers

We extended Touch Develop to support a progression of languages
with accompanying browser-based editors. The Block Editor
provides an introduction to structured programming via blocks that
can be snapped together (Figure 2). Unlike other similar offerings
[5] [9], Touch Develop’s Block Editor is strongly-typed and the
programs convert seamlessly to a next level of complexity in
learning [8].

Touch Develop’s classic mode shown in Figure 4 features a
statically-typed scripting language with syntax-directed editor. The
language subset contains: while and for loops; if-then-else
conditional statement; functions; local and global variables;
integer, boolean, string and image types; operations over values of
the above types; user-defined event handlers and libraries.

Browser-based compilers from the Block Editor to Touch Develop
and then to ARM assembly and machine code automate the
transition from a visual language to a text-based language, and then

3 http://www.arm.com/products/processors/cortex-m/cortex-m0.php

to binary language of the ARM-based micro:bit. The first compiler
allows a student to convert a Block Editor script into a Touch
Develop script with a single press of a button (Figure 2).

Figure 2. The Block Editor

3.2 Compile and Flash
Figure 3 shows the flow of compilation for the micro:bit. When a
student has her Block Editor or Touch Develop script (Step 1)
ready, she can connect her micro:bit to a computer via a USB cable,
so it appears as a mounted drive. Compilation from Touch Develop
to the micro:bit proceeds all within the confines of the web browser.
The student is prompted to save the ARM binary program to a file
(Step 2) which she then simply drags to the micro:bit mounted
drive, which flashes the micro:bit device (Step 3) with the new
program.

In more detail, the Touch Develop script is first compiled to ARM
Thumb assembly code, which is then translated into machine code.
The machine code is then injected into a pre-compiled runtime file
(which conveniently uses a text-based hex format). The runtime file
comes with metadata specifying the addresses of runtime functions,
which helps with linking. The in-browser assembler handles not
only the 12 or so instructions that the compiler generates, but also
the remaining 100 or so, which allows users to write inline
assembly in their Touch Develop scripts if they so desire.

3.3 The Simulator
Before a student compiles her script for the micro:bit, she can run
it using the Touch Develop micro:bit simulator, all within the
confines of a web browser. The simulator has support for the LED
screen, buttons, as well as compass, accelerometer, and digital I/O
pins. To run a student's Touch Develop script in the web browser,
Touch Develop compiles it into JavaScript, the scripting language
built into all web browsers.

The working of the simulator can be seen in the following popular
example of Rock-Paper-Scissors (Figure 4). The code in Touch
Develop is shown on the left and a picture of the device on the right.
The micro:bit accelerometer is simulated with either the
accelerometer of the phone or tablet or the mouse pointer of a
desktop computer. The simulator image tilts to visualize the
simulated forces. The example also illustrates how succinct
programs are in Touch Develop. In particular, output to the LED
display can be easily created on the simulator, as is shown in Figure
2 and illustrated in the fourth program line. It is not necessary to
reference individual LEDs by number on a grid.

4 http://www.touchdevelop.com

3

Figure 3 The compilation flow for the micro:bit

3.4 The Libraries
Onboard, the micro:bit is programmed in C++. The C++ micro:bit
library provides access to the hardware functions of the micro:bit,
as well as a set of helper functions, such as displaying a
number/image/string on the LED screen. The Touch Develop
micro:bit library mirrors the functions of the C++ library. When a
Touch Develop script is compiled, the calls to Touch Develop
micro:bit functions are replaced with calls to the corresponding
C++ functions. The C++ run-time system exposes hardware
features; and takes care of mundane tasks, such as:

• blinking the LEDs several times per second, in order to ensure
that the battery is not drained within a few hours;

• managing an event bus where clients can listen for, and
dispatch events;

• "de-bouncing" the buttons, that is, making sure only one

"button pressed" event is generated, even though the physical

button may bounce off briefly;

• setting up a lightweight thread scheduler;

• abstracting away the specific communication protocols of the
on-board accelerometer, thermometer and magnetometer.

TouchDevelop is strongly typed, which is good, because well-typed
TouchDevelop programs generate well-typed C++ programs, hence
alleviating the need for a dynamic type mechanism. Given the
underlying constraints and the small amount of memory, dynamic
types would likely put a low limit on the size of programs one can
write.

Figure 4 The micro:bit simulator

4

TouchDevelop, in its traditional JavaScript code generation
scheme, is garbage-collected. We did not implement a garbage
collector for the micro:bit; rather, we rely on reference-counting.
We claim that this is "good enough" for an embedded device; by
the time users generate cyclic data structures, they will likely be
advanced enough to switch to C++ and handle memory themselves.

Users can define records with fields in TouchDevelop ("objects");
we map these to ref-counted C++ structs. Users can write event
handlers that capture local variables; we use C++11's lambda-
capture for that purpose.

4. DESIGN CONSIDERATIONS
In dealing with schools and children, many compromises had to be
made to ensure ease of use, hardware safety, and privacy in the
cloud, authorization and sheer roll out of devices at scale. These
topics will be covered in another paper.

Providing young students with an understandable programming
model was a challenge, and it took us several iterations to come up
with the current semantics. For instance, students can use a busy-
loop, active-polling programming model that is easier to
understand and reason about, but does not scale well to larger
programs. The alternative is an evented, reactive-based
programming model that relies on cooperative threading. Naturally,
this latter model comes with its own set of problems, such as
making sure students' code yields often enough or defining clear
semantics for handling button events. We mitigate these difficulties
using a variety of mechanisms, such as warnings in the simulator if
a loop has been visited a great number of times.

5. EVALUATION
We have been collecting and evaluating data on Touch Develop
since 2011 [1] based on over half a million users and over 150,000
scripts. The median size for scripts was found to be 24 lines, but up
to 100 lines was common. The target audience of the micro:bit is
children who will write short scripts, making heavy use of libraries
to accomplish complex tasks. With the more customized libraries
(as described in Section 3.4) we estimate that micro:bit users will
create satisfying apps in less than 50 lines.

We are entering the test phase of the hardware and transfer
technology. Our prime success metrics will include ease of use and
robustness, which we can only measure once the micro:bits are in
the field. To date, we have trained 600 teachers in the UK prior to
the launch and are working through the feedback.

6. RELATED WORK
We can compare the micro:bit to other coding gadgets such as the
Arduino and the Raspberry Pi according to processing capacity,
output, input and software. Firstly, the micro:bit is self-contained
with sufficient onboard sensors and buttons for input, as well as
LEDs acting as output. Even though it can be connected to external
devices, it works perfectly on its own, lowering the barrier to entry
into programming.

The micro:bit features a ARM Cortex-M0 processor which is more
powerful than the AVR in the Arduino, meaning that any valid C++
program can run unmodified on the micro:bit using the proper GCC
toolchain. However, the micro:bit is less powerful than a Raspberry
Pi, which is a complete computer that runs a full-fledged operating
system, while the micro:bit runs one program at a time. Typical
micro:bit programs link to the run-time system, which provides
various drivers for the display, buttons and extension ports, as well
systems support for memory allocation and cooperative threading.

The software platform for the micro:bit has some similarities to
Pocket Code [9] and App Inventor [5]. The advantages of Touch
Develop are its progression for lifelong coding, as discussed in
Section 3.1, and its platform independence. Considerable thought
went into a seamless linking of the software to the hardware,
providing a unified experience, which is essential for children and
teachers who are new to coding.

7. ACKNOWLEDGMENTS
Nikolai Tillmann was the inspiration behind the Touch Develop
system. Steve Hodges has guided the design of the hardware. Joe
Finney and his team at the University of Lancaster have provided
the runtime system for the micro:bit. Clare Riley has been the
indefatigable force behind the project from its start.

8. REFERENCES
[1] Thomas Ball, Sebastian Burckhardt, Jonathan de Halleux,

Michał Moskal, Jonathan Protzenko, and Nikolai Tillmann,
Beyond Open Source: The TouchDevelop Cloud-based
Integrated Development Environment, MOBILESoft, 83 -
93, 2015.

[2] Quinn Burke and Yasmin B. Kafai. 2012. The writers'
workshop for youth programmers: digital storytelling with
scratch in middle school classrooms. SIGCSE Technical
Symposium, 433-438, 2012.

[3] CAS: http://www.computingatschool.org.uk/

[4] Steve Hodges, James Scott, Sue Sentance, Colin Miller,
Nicolas Villar, Scarlet Schwiderski-Grosche, Kerry Hammil,
and Steven Johnston. 2013. .NET gadgeteer: a new platform
for K-12 computer science education. SIGCSE Technical
Symposium, 391-396, 2013.

[5] J. Liu, C.-H. Lin, P. Potter, E. P. Hasson, Z. D. Barnett, and
M. Singleton, Going mobile with App Inventor for Android:
a one-week computing workshop for K-12 teachers, SIGCSE
Technical Symposium, 433–438, 2013.

[6] Orni Meerbaum-Salant , Michal Armoni , Mordechai (Moti)
Ben-Ari, Learning computer science concepts with Scratch,
Computer Science Education , Vol. 23, Iss. 3, pp239-264,
2013

[7] Hadi Partovi. 2015. A comprehensive effort to expand access
and diversity in computer science. ACM Inroads 6, (3) 67-
72, 2015

[8] J. Protzenko, Pushing Blocks All The Way To C++, In
Blocks and Beyond Workshop, Atlanta, Georgia, 2015

[9] W. Slany, A mobile visual programming system for Android
smartphones and tablets, VL/HCC, 265–266, 2012

[10] Amber Settle, Baker Franke, Ruth Hansen, Frances Spaltro,
Cynthia Jurisson, Colin Rennert-May, and Brian Wildeman.
2012. Infusing computational thinking into the middle- and
high-school curriculum. ITiCSE, 22-27, 2012

[11] Linda Werner, Shannon Campe, and Jill Denner. Children
learning computer science concepts via Alice game-
programming. SIGCSE Technical Symposium, 427-432,
2012.

[12] Teruya Yamanishi*, Kazutomi Sugihara, Kazumasa Ohkuma
and Katsuji Uosaki, Programming instruction using a micro
robot as a teaching tool, Computer Applications and
Engineering Education, 23, (1), 109–116, 2

