Pushing Blocks all the way to C++

Jonathan Protzenko

Microsoft Research

One Microsoft Way
Redmond, Washington 98052
Email: protz@microsoft.com

Abstract—The BBC micro:bit project aims to teach pro-
gramming to every 11 to 12-year-old in the UK, through the
means of a programmable device half the size of a credit card.
The device will be freely handed out to every student.

Microsoft’s TouchDevelop programming environment was
picked to provide the programming experience for Kkids; we
retrofitted the website for the micro:bit. TouchDevelop re-
mains a complex beast: in order to make it easier for 7th graders
to program, we added an alternative, visual code editor based
on Google’s Blockly [1].

This paper is an experience report about the various challenges
we met when trying, at one end, to expose a visual Blocks-based
programming model, while at the other end generating C++ for
the device.

I. OVERVIEW OF THE PROJECT

The microcontroller will be handed out to students in
the fall, and is about 4cm by S5cm wide. It is equipped
with an ARM Cortex-MO processor, 16k of RAM, 128k of
flash memory, a compass, an accelerometer, a Bluetooth Low
Energy (BLE) chip, and a series of pins to enable Arduino-
style programming. The system features a 5x5 LED array and
two buttons for input-output. The chip is programmable via
the ARM mbed technology: upon plugging it into a computer,
the chip masquerades as a USB key, meaning that it suffices
to drag and drop a hex file onto the drive to perform flashing.

The BBC micro:bit is programmed using either ARM
Cortex-MO assembly or C++. The blessed toolchain is ARM’s
mbed platform, which consists of a web-based, C++ online
IDE. Programs written in the online IDE are compiled in
ARM’s cloud; the resulting hex file appears as a browser
download. We do not expect students to master the sub-
tleties of C++; therefore, students get to write programs
using TouchDevelop. Upon hitting “compile”, the student’s
TouchDevelop program is translated to C++, which is then
sent over to ARM’s cloud. The resulting hex file similarly
appears as a browser download.

The stated goal of the project is to teach the basics of pro-
gramming to all students; as one BBC executive so accurately
put it: “if we only manage to teach them that numbering
starts at 0 in computing, we’ll save the country a lot of
bugs already”. Joke aside, we expect advanced students to
master basic control structures (conditionals, loops); variables;
abstraction (via functions). While the micro:bit enables
sophisticated projects that bundle sensors and displays over
I2C, we expect most students to play with the onboard
compass and accelerometer only.

TouchDevelop is a JavaScript-inspired, statically-typed,
syntax-directed, web-based programming language. While
suited to beginners, TouchDevelop still makes it possible
to write faulty programs that require user intervention to
fix. Therefore, in order to lower the entry barrier for 7th
graders, we decided to include, in addition to the classic
“TouchDevelop editor”, an editor based on Google’s Blockly.
There are many reasons for this: we expect teachers to be more
familiar with Blocks-based programming environment, due to
prior experience with Scratch or Hour of Code; we also expect
students to “click” better with Blocks programs.

The compilation scheme of “Blocks” programs is as fol-
lows: they are first (invisibly) translated to TouchDevelop, then
the regular compiler from TouchDevelop to C++ kicks in and
performs the rest of the job.

Going through TouchDevelop presents two major advan-
tages. The first one is purely technical: we don’t need two
separate compilation paths. The second one is pedagogical:
the student can choose to perform the conversion manually at
any time. This presents a learning opportunity, showing the
translation from Blocks to a more traditional programming
language; it also allows the student to take their program to
the next level and “unlock” more programming possibilities.

II. PROGRAMMING MODEL

One of the challenges we had when designing our Blocks
language was to keep a programming model that we believe is
simple enough for students to understand, while still making
sure we can map Blocks programs to suitable C++. Here is
an overview of the programming model we came up with.

Memory model Memory management is automatic; students
do not have to allocate or free memory. Scalar values
such as booleans and integers are passed by copy. Heap-
allocated values such as 5x5 images and character strings
are passed by reference.

Threading model Threading is cooperative, meaning that at
certain program points, the current thread yields control
back to the scheduler, hence giving other threads a chance
to execute. Examples of threads include forever blocks
(which fork a new computation) and event handlers.

Event model Students can either do active polling (“if button
A is pressed, then do...”), or register event handlers
(“when button A is pressed, do...”). Again, this is fairly
convenient for the student, but makes our compilation



show image

create image
0 1

e

90
20 0
30
04

oo -~

Fig. 1. User-friendly UI for designing new images

scheme more involved, as it involves closures under the
hood.

Syntax model Thanks to a careful design of our blocks and
their connections, issues such as starving are mitigated.
Furthermore, we added some friendly blocks that allow
editing 5x5 images and animations easily (Figure 1). It
turns out in practice that starving is not an issue.

Type system For performance reasons which we expose be-
low, we wish to statically type Blockly variables in order
to generate efficient C++. Therefore, and quite against the
Blockly spirit, we require variables to be typed. Types are
inferred via a ML-style, Hindley-Milner type inference
algorithm [2]. The type inference algorithm has been
written outside of the Blockly codebase, meaning that
it is not well integrated. Indeed, the user may get an
unfriendly error message rather than visual clues. We
hope to improve this.

A. Discussion of the programming model

We briefly contemplated skipping type inference, requir-
ing instead that variables be annotated with their types at
definition-time. The engineering effort would have consisted of
an extra “definition” block, perhaps with some customization
of Blockly to ensure the block is always provided'. We
felt, however, that one of the great strengths of Blockly is
its simplicity, and that requiring the user to understand and
provide types for variables would have been a deterrent. In
the current design, unless the student intentionally mixes, say,
numbers and images, the compilation proceeds silently. We
do perform a lot of work under the hood, but this remains
invisible for the student.

Cooperative threading turned out to be essential: threads are
never interrupted, meaning that we completely rule out data
races. The main drawback to cooperative scheduling is that
threads must yield often enough to avoid starving. In practice,
we haven’t had starving issues.

An alternative design would have been pre-emptive schedul-
ing, with a hardware interrupt that runs at periodic intervals
and schedules another thread for execution. A pre-emptive

BlocklyDuino [3] adopts this approach, but does not seem to check that
a variable is always properly defined.

scheduler (as is found in most modern systems) would expose
race-conditions, when two threads try to access the same
variable. This would, in turn, take us towards the difficult
problem of inserting locks automatically. Locks come with a
memory and performance cost. We were happy to let students
ignore all these issues.

Reference counting fails in the presence of cycles. It is
conceivable that an advanced student indeeds succeeds in
creating cycles, using advanced features of TouchDevelop (this
is not possible with Blocks). However, ruling this out requires
significant more run-time overhead than basic reference count-
ing. We felt that the current tradeoff was satisfactory, and
that this was a good learning opportunity for the few highly-
advanced students.

III. THE BLOCKS COMPILER

The compilation of Blocks, as we mentioned earlier, implies
compiling first to the TouchDevelop language. There is nothing
profound about choosing TouchDevelop as a target: it just so
happens that we already needed a compiler from TouchDe-
velop to C++; furthermore, we wished to allow the user to
perform conversion manually (“graduate”), so a compiler from
Blocks to TouchDevelop definitely made sense.

Conjecture 1 (Correctness of TouchDevelop compilation). If
a TouchDevelop program P is well-typed, then the result of
compiling P to C++ compiles without errors.

The semantics of TouchDevelop programs in the context of
the micro:bit are fuzzy. We thus do not state any result
about the preservation of semantics.

We of course want to make sure that a Blockly program
never generates an (unscrutable) C++ compile error. There-
fore, compiling a Blockly program should generate a well-
typed TouchDevelop program, hence ensuring that compilation
succeeds without errors.

Conjecture 2 (Correctness of Blockly compilation). If a
Blockly program P is well-typed, then the result of compiling
P is a well-typed TouchDevelop program.

A. Alternative designs

We chose to generate a statically-typed C++ program
that faithfully implements the original Blocks program, with
TouchDevelop as an intermediary step. Some other designs are
possible.

e We could forgo static typing altogether, and adopt a
memory representation where all objects are tagged with
their type, and have run-time checks for every operation
to ensure that the operands are of the right type. This is
dynamic typing. We ruled out this approach for efficiency
and memory consumption reasons (the implementation
of the BLE stack uses a significant chunk of memory,
leaving very little of the original 16k available).

o We could compile Blocks programs to bytecode, and flash
the device with a bytecode interpreter along with the
bytecode that corresponds to the original program. This



is the approach used by MicroPython [4] and OCaPic [5].
We didn’t have the engineering resources to design a
bytecode format, and write an interpreter and run-time
system for it (including a GC, most likely in Cortex-
MO assembly). Furthermore, our approach minimizes the
memory and performance overhead in our constrained
context.

B. Type-checking Blockly programs

Programs written in Blockly are dynamically-typed and all
variables live in a common, global scope. TouchDevelop is
a JavaScript-inspired, statically-typed programming language
equipped with lexical scope. In order to successfully convert
from the former to the latter, one needs to resolve the types
of the program variables. We implemented fype inference for
blocks.

In Blockly, one can, and will want to define custom blocks.
For instance, we have a “show image” block that displays an
image on the 5x5 LED array. When defining a custom block,
one specifies its shape; color; connections; labels, and so on.
One can optionally provide types: for instance, the “+ (arith-
metic plus)” block takes two numbers and returns a number.
Similarly, the “show image” block takes a micro:bit image
and returns nothing. These type annotations are leveraged by
the user interface of Blockly: if the user tries to fill the “show
image” block with a number, the smaller block “pops out”
of the outer one, and the user cannot, “syntactically”, write
buggy code (Figure 2).

show image

Fig. 2. Blockly’s UI prevents connecting these two blocks: the “show image”
block is defined as taking an image, not a number.

Not all blocks can be annotated, though. Since the types
are static, and provided at block-definition time, one cannot
provide a proper type annotation for the variable block. There-
fore, the Blockly user interface performs no check for this
block, meaning that invalid (per the TouchDevelop semantics)
programs can be written, such as “show image item”, where
“item” has been assigned a number earlier (Figure 3).

set to

show image at offset [1)

Fig. 3. This program cannot be translated to valid C++, since the item
variable cannot be both an integer and an image.

In order to target a statically-typed language (TouchDe-
velop), which will in turn allow us to generate efficient C++
(with no dynamic types), we must infer the type of Blockly
variables.

This is the classic type inference problem, wherein each
block has an expected type for its arguments, and a return type.
For instance, we may understand the “+ (plus)” block to have
signature int plus(int x, int y). Some blocks have
a polymorphic type: for instance, equality comparison is meant
to take two operands of the same type, so one may understand
it to have type bool equals<T>(T x, T y). Our type-
checking algorithm therefore must perform unification, where
upon comparing x and y for equality, we unify their types.

The algorithm kicks in at compile-time (or graduation-time).
Since all variables are global, it suffices to loop over all blocks
in no particular order. The type-checking algorithm is easy,
since there is no subtyping or structural types such as pair
or records (we did not enable lists). For each block of the
program, we look up its associated typing rule and determine
types accordingly. An English, readable version of the rules
may be as follows:

o when assigning to i, the type of i must be the same as
the return type of the right-hand side;

« when comparing two blocks with “=" (equality), the type
of the two operands should match;

o when summing two blocks with “+” (plus), both operands
should be numbers;

e ctc.

It may be the case that the type of a variable still remains
undetermined after type inference. This is not an error; this
happens, for instance, when a variable has been defined, then
never been assigned to. In this situation, we arbitrarily choose
“number” for the type.

The algorithm uses textbook, imperative union-find struc-
tures to perform unification. Type inference and code genera-
tion are implemented as two separate phases. The implemen-
tation is made easier by the fact that there is no lexical scope,
meaning that we don’t need to maintain a lexical environment
and deal with shadowing issues.

Because of the relative simplicity, the only possible issue
is a type mismatch between the expected type and the actual
type. We generate a classic message of the form “this variable
is a number, but we wanted an image”. We then highlight
the faulty blocks in the user interface with extra CSS classes
(Figure 4).

set to

showimage (EIEd atofset (@)

Fig. 4. Type inference flags the faulty program; in this picture, the item
variable block is highlighted in red.



C. Run-time system

A C++ run-time system written by the University of Lan-
caster implements lightweight cooperative threading using
fibers. In essence, multiple “threads” compete for execution. It
is up to the current thread to yield control back to the runtime.
This happens when: pausing, doing IO (reading the status of
the pins, polling the buttons), scrolling images. ..

The only possible way to starve other threads is to write a
while (true) loop and not use the run-time system within
the loop body. In our context, this basically amounts to a
useless loop; only bogus programs would have such an issue.
Therefore, starving has not been an issue for us.

An interesting issue is the “forever” block. The block
runs its body in a loop; however, implementing “forever” as
while (true) would preclude any subsequent instructions
from executing. It turns out that the intuitive semantics of
the “forever” block is for the body to be executed in a
loop, on a new fiber. Students naturally write several such
“forever” blocks in the workspace and expect them to all run
in “parallel”. Our implementation makes sure that the fiber
yields at regular intervals (Figure 5).

function forever (body Action) do
/+* Repeat the code forever in the
background. On each iteration,
other fibers to run. */
control —=> in background do
while true do
body —=> run
basic —> pause(20)
end while
end

allows

end function

Fig. 5. The implementation of the forever combinator

This raises the issue of forking: one could write a pro-
gram that creates an unbounded number of new fibers, hence
crashing the run-time system. In order to mitigate the fork-
bomb issue, blocks that result in the creation of a new fiber
(“forever”, “on button pressed”) cannot be nested within other
blocks (they have no top connection). This means that the
fork-bomb “forever (forever ...)” cannot be written in Blocks

(it can, though, in TouchDevelop).

Fig. 6. The forever block is crafted in such a way that it cannot be nested

Having several fibers running at the same time is actually
fairly useful: one may want to poll some output pin in the
background (Makey makey-style project), while blinking an
LED at a regular interval. Such a situation is easily expressed
with two cooperative fibers.

D. Semantic matches and mismatches

29

Writing “when button A is pressed do...” essentially
amounts to writing a closure, where the event handler may
capture to variables in scope. The good thing is, in Blockly,
all variables are global. Translated Blockly programs thus
never refer to local variables, which completely eliminates
the issue of proper scoping of captured variables, and of
their subsequent compilation using a garbage-collected, heap-
allocated block. This is an area where Blockly’s model of
global variables proved beneficial for us.

A difficulty was the compilation of for blocks into TouchDe-
velop for-loops. TouchDevelop only features a specific form
of for-loop, where ¢ is immutable, and one writes for 0 <
i< . and only specifies the upper bound. This means
that we had to replace the original Blockly for-loop (remove
the “step” and “lower bound” parameters), in order to better
match the TouchDevelop for-loop. Still, one cannot always
translate a Blockly for-block into a TouchDevelop for-loop:
Blockly still allows one to assign to the index (anywhere) or
read it (outside the loop). We thus had to implement a series of
checks (and reconstruct a notion of lexical scope in Blockly)
to determine whether a Blockly for-block would result in a
TouchDevelop for-loop or while-loop. This is partly due to
our own constraints (we insisted on targeting TouchDevelop),
party due to the very lenient model of Blockly.

IV. LOOKING FORWARD

Arduino-like, hardware-based programming projects are
gaining momentum. This is, after all, well deserved: unlike
deploying a website to the cloud, one only needs to learn one
language, the result is immediate, and the student can easily
relate their program to the observed output.

One key feature in the micro:bit project is that it
requires no special software: programming happens in the
web browser, compilation happens in the cloud. Therefore,
we believe that there is great potential in marrying blocks- and
web-based programming environments with hardware targets.

In that context, blocks-based programming environments
would benefit from a stricter, opt-in discipline that makes the
rest of the compilation easier. One could, for instance, integrate
the type-checking discipline within the Blockly codebase, and
provide visual feedback based on the type of variables (“pop-
out” on type mismatch, use colors...).

From the developer’s perspective, facilities such as testing
whether a variable is lexically scoped within a block would
also be beneficial, as we could allocate some variables on the
stack in the resulting, translated program.



(1]
[2]

[3]
(4]
(5]

REFERENCES

N. Fraser et al., “Blockly: A visual programming editor,” 2013. [Online].
Available: https://developers.google.com/blockly/

R. Hindley, “The principal type-scheme of an object in combinatory
logic,” Transactions of the american mathematical society, pp. 29-60,
1969.

F. Lin, “BlocklyDuino, a web-based editor for Arduino,” 2012. [Online].
Available: http://gasolin.github.io/BlocklyDuino/

D. George, “Micro python,” 2013. [Online]. Available: https:/
micropython.org/

B. Vaugon, P. Wang, and E. Chailloux, “Programming microcontrollers
in OCaml: The OCaPIC project,” in Practical Aspects of Declarative
Languages. Springer, 2015, pp. 132-148.



