Protocols course

Low-level and stateful programming using F*

Jonathan Protzenko (MSR)
jonathan.protzenko@gmail.com
Points covered in this lecture

- Pure programming, a word about Z3, an example
- Stateful programming, why it’s painful
- A structured memory model (hyperheaps, framing)
- A low-level memory model (hyperstacks, liveness)
- Extraction to C, an example

Please ask questions!
Pure programming
Pure computations

\[
\text{let } \text{abs } x = \text{if } x \geq 0 \text{ then } x \text{ else } -x
\]

- This computation is pure
- This computation is total
Pure computations

```ocaml
let abs x = if x >= 0 then x else -x
```

- This computation is pure
- This computation is total

We should mark it as such.
Total computations can be used in specifications

```
let abs x: Tot int =  
  if x >= 0 then x else -x

let abs' x: Tot (y:int{ y = abs x }) =  
  if x > 0 then x else -x
```

- Notice the refinement type above
- Total functions allow the programmer to reason about values, not computations
A reminder: intrinsic vs. extrinsic

(* Intrinsic *)
let abs' x: Tot (y:int{ y = abs x }) =
 if x > 0 then x else -x

(* Extrinsic *)
let lemma_abs_abs' ():
 Lemma (forall (x: int). abs x = abs' x) =

• Intrinsic: refinements or pre/post-conditions
• Extrinsic: lemmas that reveal properties after the definition
Total code can be evaluated

F* can evaluate total computations at type-checking time:

```fsharp
module L = FStar.List.Tot

let _ =
    let l = [ -1; -2 ] in
    let l' = L.map abs l in
    assert_norm (L.hd l' = 1);
    assert_norm (L.hd (L.tl l') = 2);
    ()

let _ =
    assert_norm (pow2 20 = 1048576)
```

This is the normalizer; life is easy when using total computations.
let _ =
 let l = abs (-1) in
...
(* plenty of code *)
...
l
Immutability is good for reasoning
let _ =
 let l = [] in
 let l = 1 :: l in
 let l = l.tl l in
assert (l = [])

Shadowing alleviates the need to reason about mutable state
An exercise in pure style

One-time pad encryption and decryption, a core operation in cryptography.

\[
x \oplus x = 0 \\
x \oplus y = y \oplus x \\
x \oplus (y \oplus z) = (x \oplus y) \oplus z
\]

Binary or (a.k.a. xor) is a commutative, associative operation.
An exercise in pure style

One-time pad encryption and decryption, a core operation in cryptography.

\[
x \oplus x = 0 \\
x \oplus y = y \oplus x \\
x \oplus (y \oplus z) = (x \oplus y) \oplus z
\]

Binary or (a.k.a. xor) is a commutative, associative operation.

A very enjoyable property: \[w \oplus (w \oplus p) = p \]
An exercise in pure style (2)

One-time pad encryption and decryption, a core operation in cryptography.

\[
\begin{align*}
\text{encrypt}(w^*, p^*) &= w_0 \oplus p_0 \ldots w_n \oplus p_n \\
\text{decrypt}(w^*, c^*) &= w_0 \oplus c_0 \ldots w_n \oplus c_n \\
\text{decrypt}(w^*, \text{encrypt}(w^*, p^*)) &= \\
&= w_0 \oplus (w_0 \oplus p_0) \ldots w_n \oplus (w_n \oplus p_n) = \\
&= p_0 \ldots p_n = p^*
\end{align*}
\]

Encrypt and decrypt are the same; the one-time pad \(w^*\) is usually derived from a key (possibly derived with asymmetric cryptography) and a nonce.
An exercise in pure style (2)

Goal: implement these three functions.

```
module U32 = FStar.UInt32

val encrypt : otp : list U32.t -> plain : list U32.t -> Tot (list U32.t)
val decrypt : otp : list U32.t -> plain : list U32.t -> Tot (list U32.t)
val encrypt_decrypt : otp : list U32.t -> plain : list U32.t ->
  Lemma (decrypt otp (encrypt otp plain) = plain)
```

Skeleton at http://jonathan.protzenko.fr/mpri/

Syntax: `U32.(x ^^ y)` for XOR
Recap:

- F* can reason efficiently about pure functions;
- these are encoded into the SMT solver (Z3);
- the definitions can be unfolded by the SMT-solver
module U32 = FStar.UInt32
module L = FStar.List.Tot

let rec encrypt
 (otp: list U32.t)
 (plain: list U32.t{ L.length plain = L.length otp }):
 Tot (cipher: list U32.t{ L.length cipher = L.length plain })

(* versus *)

val encrypt: otp:list U32.t -> plain:list U32.t ->
Pure (list U32.t)
 (requires (L.length otp = L.length plain))
 (ensures (fun cipher -> L.length otp = L.length cipher))

Tot is Pure with trivial (e.g. True) pre- and post-conditions.
Understanding the difference between pure and effectful

Pure and effectful have a **wildly different status** in F*.

```fstar
let abs x: Tot nat = if x >= 0 then x else -x
```

165170 ;;;;;;;;;;;Equation for Test.abs
165171 (assert (!
165172 (forall ((@x0 Term))
165173 (! (= (Test.abs @x0)
165174 (ite (= (Prims.op_GreaterThanOrEqual @x0
165175 (BoxInt 0))
165176 (BoxBool true))
165177 (ite true
165178 (Prims.op_Minus @x0)
165179 (Prims.op_Minus @x0)
165180 Tm_unit)))
```

J. Protzenko — MPRI
Low-level and stateful programming in F*
January 20th, 2017 15 / 58
Understanding the difference between pure and effectful (2)

- Pure functions are encoded to the SMT solver
- The SMT solver can reason about them and reduce them
- No such thing happens for effectful computations
Effectful programming with Heap
Understanding the difference between pure and effectful (3)

```ocaml
let abs x: Tot nat = if x >= 0 then x else -x

let abs_ref x: St nat =
 let r = ST.alloc x in
 if !r < 0 then
 r := - !r;
 !r

(* Works: SMT-solver "knows what abs is" *)
let test =
 assert (abs (-1) = 1)

(* Fails SMT-solver "doesn't know what abs_ref is" *)
let test' =
 assert (abs_ref (-1) = 1)
```
Understanding the difference between pure and effectful (4)

```plaintext
let abs x: Tot nat = if x >= 0 then x else -x

(* Function has a Hoare Triple *)
let abs_ref' x: ST int
 (requires (fun _ -> True))
 (ensures (fun _ y _ -> y = abs x))
=
 let r = ST.alloc x in
 if !r < 0 then
 r := - !r;
 !r

(* Works: SMT-solver reasons about the logical specification *)
let test' =
 assert (abs_ref' (-1) = 1)
```
Aside: how does an SMT-solver work?

F* constructs a logical formula $\phi$ that has to be valid.

- That is, $\forall$ variables, $\phi$ is always true (validity).
- That is, $\forall$ variables, $\neg \phi$ is always false.

SMT-solvers are about satisfiability, that is:

- There exists an assignment of variables that satisfies this formula (SAT), or:
- There exists no assignment of variables that satisfies this formula (UNSAT).

If $\neg \phi$ is UNSAT, then $\neg \phi$ is always false, i.e. the program is correct.
Pure vs. stateful

(* Short-form effect *)
let abs1 x: Tot nat =
  ...

(* Long-form effect *)
let abs2 x: Pure int
  (requires True)
  (ensures (fun y ->
    y >= 0)) =
  ...

(* Short-form effect *)
let abs3 x: St nat =
  ...

(* Long-form effect *)
let abs4 x: ST nat
  (requires (fun _ -> True))
  (ensures (fun _ y _ ->
    y = abs x)) =
  ...

Note the difference in pre- and post-conditions.
Why is stateful verification hard?

```fsharp
module U32 = FStar.UInt32

type connection = {
 nonce: ref U32.t;
 count: ref U32.t;
 ...
}

let nonce c: St U32.t =
 !c.nonce

let test =
 let c1 = { nonce = alloc 0ul; key = alloc []; count = alloc 0ul }
 let n = nonce c1 in
 let h0 = ST.get () in
 (* Fails! Why? *)
 assert (Heap.sel h0 c1.count = 0ul)
```
Why is stateful verification hard? (2)

The heap is modeled at the verification level:

(* FStar.Heap.fst *)
assume new type heap : Type0

assume val sel: #a:Type -> heap -> ref a -> GTot a
assume val upd: #a:Type -> heap -> ref a -> a -> GTot heap
assume val emp: heap

• The effect system of F* has a model of the heap at each program point (monadic transformation)
• GTot means “for proofs only”
• Unlike pure values, references may change: we no longer know what the reference is!
• The model is written by experts – don’t want to assume false
• Ideally, we have an implementation of the model (map)
Why is stateful verification hard? (3)

The heap is modeled at the verification level:

(* FStar.Heap.fst *)

type modifies (mods:set aref) (h:heap) (h':heap) =
equal h' (concat h' (restrict h (complement mods))) /
subset (domain h) (domain h')

abstract val lemma_modifies_trans:
  m1:heap -> m2:heap -> m3:heap ->
s1:set aref -> s2:set aref ->
Lemma
  (requires (modifies s1 m1 m2 /
  modifies s2 m2 m3))
  (ensures (modifies (union s1 s2) m1 m3))
Why is stateful verification hard? (4)

The heap is modeled at the verification level:

- References are always live
- No need to have liveness predicates
- This is the garbage-collected, ML-style heap.
- No free operation, no notion of lifetime.

Ideally, we would prove a garbage-collector to show that this is a sound model.

These assumptions will change later on in the lecture.
Why is stateful verification hard? (5)

Need to talk about modifies clauses.

```fsharp
let nonce c: ST U32.t
 (requires (fun _ -> True))
 (ensures (fun h_0 _ h_1 ->
 modifies {!{} h_0 h_1}) =
 !c.nonce)
```

Where `{ r1; r2 ... }` is syntax for a set of references.
Why is stateful verification hard? (6)

This does not verify. Why?

```plaintext
let bump (c_in: connection) (c_out: connection): ST unit
 (requires (fun _ -> True))
 (ensures (fun h_0 _ h_1 ->
 let open U32 in
 Heap.sel h_1 c_in.count =^ Heap.sel h_0 c_in.count +%^ 1ul \/
 Heap.sel h_1 c_out.count =^ Heap.sel h_0 c_out.count +%^ 1ul)
 let open U32 in
 c_in.count := !c_in.count +%^ 1ul;
 c_out.count := !c_out.count +%^ 1ul
```
Why is stateful verification hard? (7)

Not only the modifies clauses, but also the disjoint clauses.

```plaintext
let bump (c_in: connection) (c_out: connection): ST unit
 (requires (fun _ ->
 c_in.count <> c_out.count))
(ensures (fun h_0 _ h_1 ->
 let open U32 in
 Heap.sel h_1 c_in.count =^ Heap.sel h_0 c_in.count +%^ 1ul /
 Heap.sel h_1 c_out.count =^ Heap.sel h_0 c_out.count +%^ 1ul)
let open U32 in
 c_in.count := !c_in.count +%^ 1ul;
 c_out.count := !c_out.count +%^ 1ul
```
Why is stateful verification hard? (8)

- Loss of modularity: I need to talk about what I’m doing, but also what I’m not doing
- Quadratic explosion! Need to state anti-aliasing for `c_in.count`, `c_in.nonce`, `c_out.count`, `c_out.nonce`.
- Need to regain compositionality
- That is, separation
Structuring stateful programming with HyperHeap
A new memory model: HyperHeaps

The weakest pre-condition composition leaves other (disjoint) regions untouched.

“this computation just touches $r_2$” = non-interference for free
Coarse-grained separation (1)

Connections now live in a region:

```plaintext
type connection (#r: HH.rid) =
| Connection:
 nonce:HH.rref r U32.t ->
 count:HH.rref r U32.t { count <> nonce } ->
 connection #r
```

- Implicit argument for the region
- One connection per-region
- Use a dependent type instead of a record
- Notice the syntax
Coarse-grained separation (2)

```plaintext
let nonce (c: connection): ST U32.t
 (requires (fun _ -> True))
 (ensures (fun h_0 _ h_1 -> HH.modifies Set.empty h_0 h_1)) = !c.nonce

- Not talking about r
- Higher-level modifies predicate talks about the regions
```
Coarse-grained separation (3)

```cofficient
let bump #r_in #r_out
 (c_in: connection #r_in)
 (c_out: connection #r_out):
 ST unit
 (requires (fun _ -> r_in <> r_out))
 (ensures (fun h_0 _ h_1 ->
 let open U32 in
 HH.sel h_1 c_in.count =^ HH.sel h_0 c_in.count +^ 1ul /\
 HH.sel h_1 c_out.count =^ HH.sel h_0 c_out.count +^ 1ul /\
 HH.modifies
 (Set.union (Set.singleton r_in) (Set.singleton r_out))
 h_0 h_1))
 =
 let open U32 in
 c_in.count := !c_in.count +^ 1ul;
 c_out.count := !c_out.count +^ 1ul
```
Some notes about the HyperHeap memory model (0)

- This still assumes garbage collection
- The regions are for separation purposes only, not memory management
- A library of lemmas facilitate programming
Some notes about the HyperHeap memory model (1)

(* A region-id is a pair of a color and unique-id *)
abstract let rid = list (int * int)

(* An rref lives in a given region *)
abstract let rref (id:rid) (a:Type) = Heap.ref a

(* The heap maps region-ids to heaplets *)
type t = Map.t rid heap

(* Ghost operators: two selection operations *)
let sel (#a:Type) (#i:rid) (m:t) (r:rref i a) : GTot a =
  Heap.sel (Map.sel m i) (as_ref r)

let upd (#a:Type) (#i:rid) (m:t) (r:rref i a) (v:a) : GTot t =
  Mapupd m i (Heap.upd (Map.sel m i) (as_ref r) v)
Some notes about the HyperHeap memory model (2)

(* Note the use of Cons?. *)

abstract val includes : rid -> rid -> GTot bool
let rec includes r1 r2 =
  if r1=r2 then true
  else if List.Tot.length r2 > List.Tot.length r1
  then includes r1 (Cons?.tl r2)
  else false

let disjoint (i:rid) (j:rid) : GTot bool =
  not (includes i j) && not (includes j i)
Some notes about the HyperHeap memory model (3)

abstract val extends: rid -> rid -> GTot bool
let extends r0 r1 = Cons? r0 && Cons?.tl r0 = r1

abstract val parent: r:rid{r<>root} -> Tot rid
let parent r = Cons?.tl r

let fresh_region (i:rid) (m0:t) (m1:t) =
  (forall j. includes i j ==> not (Map.contains m0 j))
  \ \ Map.contains m1 i
Some lemmas:

- if two parents are disjoint, two children (extends) are distinct
- if two parents are disjoint, their two respective fresh children (fresh_region) are disjoint
- the includes predicate is transitive
- if a parent is modified, included children are potentially modified
Some notes about the HyperHeap memory model (5)

\[
\text{let modifies\_just } (s:\text{set rid}) (m0:t) (m1:t) = \\
\quad \text{Map.equal m1 (Map.concat m1 (Map.restrict (complement s) m0))} \\
\quad \setminus \text{subset (Map.domain m0) (Map.domain m1)}
\]

\[
\text{let modifies\_one } (r:\text{rid}) (m0:t) (m1:t) = \\
\quad \text{modifies\_just (singleton r) m0 m1}
\]

- Z3 can reason using coarse-grained modifies clauses
- Any heaplet that is not modified is preserved
- Therefore, an un-modified heaplet’s references are untouched
Low-Level stateful programming with HyperStack
A recap

• Structure is everything!
• Push the HyperHeap discipline further, and change the memory model
• Now: a stack of regions, and a heap
• Things are no longer eternal
• Benefit? Extraction to C!
Low* is a **low-level, first-order** fragment of F*.

- Offers a **limited** subset of C’s power: stack-allocated buffers and locally mutable variables
- Code is written against a HyperStack library
- Suitable pre- and post-conditions ensure **memory safety**
- If the code **ends up** in Low*, it can be translated to C.
Kremlin

Clight ≈ C* ≈ λow*

F* → EMF* → Low* ≈ erase §3.0 → 1st-order EMF*

print partial ≈

hoist ≈

compile GCC/Clang/CompCert

Exe .c
The memory model

- A list of stack frames
- The **tip** is the current stack frame
- Each stack frame maps locations to values
- Special well-parenthesized `push_frame` and `pop_frame`

```ml
let test1 (_: unit): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame ();
let b = Buffer.create 21l 2ul in
print_int32 (index b 0ul %^ index b 1ul);
pop_frame ()
```
The Stack effect

let equal_domains (m0:mmem) (m1:mmem) =
m0.tip = m1.tip /
Set.equal (Map.domain m0.h) (Map.domain m1.h) /
(∀ r. Map.contains m0.h r ==> TSet.equal
   (Heap.domain (Map.sel m0.h r))
   (Heap.domain (Map.sel m1.h r)))

effect Stack (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))) =
STATE a (fun (p:st_post a) (h:mmem) ->
  pre h /
  (∀ a h1.
   (pre h /
    post h a h1 /
    equal_domains h h1) ==> p a h1))

Preserves the layout of the stack and doesn’t allocate in any frame.
Buffers are C-style arrays.

- passed by reference
- can take an inner pointer (arithmetic)
- the heap is backed by a map; buffers are backed by a sequence
We model buffers as a sequence.

```fsharp
noeq private type _buffer (a:Type) =
 | MkBuffer: max_length:UInt32.t
 -> content:reference (s:seq a{Seq.length s <= v max_length})
 -> idx:UInt32.t
 -> length:UInt32.t{v idx + v length <= v max_length}
 -> _buffer a
```
The contents are shared to reason about aliasing.

\[
\begin{align*}
\text{val } \text{sub}: \#a:\text{Type} & \rightarrow \text{b:buffer } a \\
& \rightarrow i:\text{UInt32}.t\{v \ i + v \ b.\text{idx} < \text{pow2 } n\} \\
& \rightarrow \text{len:UInt32}.t\{v \ i + v \ \text{len} \leq \text{length } b\} \\
& \rightarrow \text{Tot } (b':\text{buffer } a\{b \ '\text{includes'} b' /\ \text{length } b' = v \ \text{len}\}) \\
\text{let } \text{sub } \#a \ b \ i \ \text{len} = \\
\text{MkBuffer } b.\text{max}_\text{length} b.\text{content} (i + ^b.\text{idx}) \ \text{len}
\end{align*}
\]
Just like \texttt{ST.get()}, the \texttt{Buffer.as_seq} function grants a pure, ghost view on the buffer.

\begin{verbatim}
let as_seq #a h (b:buffer a{live h b}): GTot (s:seq a{Seq.length s = length b})
= Seq.slice (sel h b) (idx b) (idx b + length b)
\end{verbatim}

Notice that \texttt{as_seq} can only be called in a given heap.
Working with buffers (4): an example

```fsharp
let test (): Stack unit (fun _ -> True) (fun ___ -> True) =
 push_frame ();
 assert_norm (16 < pow2 32);
let b = Buffer.create 0ul 16ul in
 b.(1ul) <- 2ul;
let h = ST.get () in
 assert (Seq.index (Buffer.as_seq h b) 0 = 0ul);
 pop_frame ()
```
A trickier example

A function in Stack requires push_region and pop_region to allocate. What about code re-use?

```plaintext
let test2 (_: unit):
 StackInline (Buffer.buffer Int32.t)
 (requires (fun h0 -> is_stack_region h0.tip))
 (ensures (fun h0 b h1 -> live h1 b \ Buffer.length b = 2))
= let b = Buffer.create 0l 2ul in
 upd b 0ul (C.rand ());
 upd b 1ul (C.rand ());
b
```
The StackInline effect

```ml
let inline_stack_inv h h' : GTot Type0 =
(* The frame invariant is enforced *)
h.tip = h’.tip
(* The heap structure is unchanged *)
/\ Map.domain h.h == Map.domain h’.h
(* Any region that is not the tip has not seen any allocations *)
/\ (\A (r:HH.rid). (r <> h.tip /\ Map.contains h.h r)
 ==> Heap.domain (Map.sel h.h r) == Heap.domain (Map.sel h’.h r))
```

effect StackInline (a:Type) (pre:st_pre) (post: (mem -> Tot (st_post a))
STATE a (fun (p:st_post a) (h:mem) ->
  pre h /\ (\A a h1.
   (pre h /\ post h a h1 /\ inline_stack_inv h h1) ==> p a h1))
```
Working with buffers (5): useful predicates

/* Modification clauses */
abstract val modifies_0 h0 h1
abstract val modifies_1 (#a:Type) (b:buffer a) h0 h1

/* Separation */
val disjoint #a #b (x:buffer a) (y:buffer b): GTot Type0

/* Liveness */
let live #a (h:mem) (b:buffer a): GTot Type0 =
 contains h b

/* Equality */
let equal #a h (b:buffer a) h’ (b’:buffer a): GTot Type0 =
 live h b \ live h’ b’ \ as_seq h b == as_seq h’ b’
An exercise

- Take the earlier one-time pad example
- Rewrite it in low-level, imperative style
- Use all the lemmas mentioned before.
- Open FStar.Seq, FStar.Buffer!

Skeleton at http://jonathan.protzenko.fr/mpri/

Start with memory safety only, then functional spec later
Demo!

```bash
demo_exe -tmpdir out Ex2Answers2.fst -skip-compilation
```

- All the **proofs** have been erased
- Only the **low-level code** remains
- Motto: high-level proofs for low-level code
- We have written 20,000 lines of F* this way
The final word

- We have a bisimulation between λow^* and C^*
- We have a simulation between C^* and C light
- These are all paper proofs
- Research project: rewrite a certified tool in F^*
Questions? jonathan.protzenko@gmail.com

Thanks for your attention