The MeZo language

Francois Pottier Jonathan Protzenko

francois.pottier@inria.fr jonathan.protzenkoa@inria.fr

INRIA

ML Workshop 2012

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 1/36

francois.pottier@inria.fr
jonathan.protzenko@inria.fr

® Mezo pitch

® A primer on permissions

® A dynamic discipline of ownership

o The current state of MezZo

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 2/36

Mezzo pitch

® Mezo pitch

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 3/36

Mezzo pitch

What is MezZo? (1)

Mezo is a strict and impure functional
programming language; MezZo offers a fine-grained
control of side-effects, aliasing and ownership.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 4/36

Mezzo pitch

What is MezZo? (2)

Mezo strikes a balance between ease-of-use and
complexity by combining a static ownership
discipline with runtime tests.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 5/36

A primer on permissions

® A primer on permissions

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 6/36

A primer on permissions

My first permission!

Variables don't have types; there are permissions.
let y = ("foo", 3) in
This snippet generates a permission
y @ (string, int)
One can think of it as a token that grants access to

y with type (string, int).
Permissions do not exist at runtime.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 7136

A primer on permissions

Permissions and functions

val length: [a] (y: list a) -> int

« The argument has an (optional) name y.
« length requires a permissiony @ list aand

« returns the very same permission: this is the
default.

« The function also produces a value of type int.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 8/36

Trading permissions

xswap swaps the two components of a mutable pair.

val xswap: [a, b] (consumes y: xpair a b)
-> (| y @ xpair b a)

« we introduce y as the name of the argument;

« the argument is consumed, i.e.y @ xpair a b
is not returned;

« however, a new permissiony @ xpair b ais
returned instead.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 9/36

Permissions can change!

Permissions replace types. At one point, we may
have:

y @ xpair a b
and later on, obtain:
y @ xpair b a

Therefore, the set of available permissions may
change with time.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 10/ 36

A sound example?

This is how a permission can be traded for another
one.

let y = e1 in
(* vy @ xpair a b *)
Xswap y;

(* vy @ xpair b a *)
(SP)

For the xswap example to be sound, “no one else”
should “see” y. This implies xswap should have
exclusive access to its argument (no aliases).

Jonathan Protzenko (INRIA) The MezZo language

ML Workshop 2012 11/ 36

A primer on permissions

Different modes for types

duplicable | exclusive
me | read-only | read-write
others | read-only ---

e xpair is exclusive: it is mutable (read-write),
and uniquely-owned, while

- int, string, are duplicable: they are immutable
(read-only), and shared.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 12/ 36

A primer on permissions

Permissions enforce access control

This means:
« y @ int can be duplicated, while
ey @ xpair int int cannot.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 13/ 36

A primer on permissions

What with separation logic?

If Tis an exclusive type,
e y @ T guarantees we own a memory block with
type T,
ey @T *x z @ Tisaconjunction that guarantees
that y and z are distinct.

The latter is a must-not-alias constraint.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 14/ 36

A primer on permissions

Internal representation

Internally, we manipulate a graph of permissions
that makes aliasing explicit.

exclusive data xpair a b =
XPair { left: a; right: b }

Let us see how the type checker represents this
type.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 15/ 36

A drawing

We can think of y @ xpair a b as the following

drawing.

y: XPair

. d

left

L:
/—> 27?7

right

b

r:
_> 2?27

Jonathan Protzenko (INRIA) The MezZo language

ML Workshop 2012 16 / 36

A primer on permissions

Expanding permissions

Permissions embody aliasing relationships

The type-checker first expandsy @ xpair a binto
y @ XPair { left: a; right: b }

then, into

y @ XPair { left: =1; right: =r }
* 1L @ a
*r@b

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 17/ 36

The singleton type

=1 is a singleton type: y @ =z means y and z point
to the same object: this is a must-alias constraint.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 18/ 36

A primer on permissions

Some syntactic sugar

« Wewritey = zfory @ =z.
« We also write:
y @ XPair { left = 1; right = r }
for
y @ XPair { left: =1; right: =r }

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 19/ 36

You said dynamic tests

y @ list T with t exclusive asserts all items in listy
are distinct.

« A mutable, doubly-linked list with arbitrary
length,

 a list where an exclusive element is present
twice,

... are both situations that cannot be represented
statically.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 20/ 36

A dynamic discipline of ownership

Plan

® A dynamic discipline of ownership

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 21/ 36

In a nutshell

We can represent immutable heaps with arbitrary
shape, mutable heaps with a tree shape, but we
cannot represent mutable heaps with arbitrary
shape.

In order to alleviate this restriction, we use dynamic
tests to ensure safety. This is achieved through the
(new) adoption and abandon operations.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 22/36

Our running example

A first-in, first-out queue, and its aliasing pattern.
fifo

head

tail

cell cell cell

/—> . f /—>
next — next — nexO

Cells are mutable; the ownership pattern is no
longer a tree.
ML Workshop 2012 23/36

A dynamic discipline of ownership

How does it work? Adoption

An object can be declared as adopting other
objects.

exclusive data fifo a =
| Empty ..
| NonEmpty ..

adopts cell a

A permission for the adopter (the FIFO) grants
permission for its adoptees (the cells).

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 24/ 36

A dynamic discipline of ownership

An adoption hierarchy

f@ fifo | acts as the adopter

IS

cl @cell c2 @ cell

the adoptees of f

Jonathan Protzenko (INRIA) The Mezzo language ML Workshop 2012 25/36

A dynamic discipline of ownership

How does it work? Adoption (conta)

(* x @ cell a x f @ fifo a *)
give x to f;
(* x @ dynamic x f @ fifo a *)

x @ dynamic means “x may currently be adopted by
some other object”.

This is a duplicable permission.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 26/ 36

A dynamic discipline of ownership

How does it work? Abandon

We traded x @ cell aforx @ dynamic, which is
duplicable but hides the true type of x.

(* x @ dynamic = f @ fifo a *)
take x from f;
(* x @ cell a x f @ fifo a *)

We regain the original permission, but we need to
make sure no object can be abandoned twice:
abandon involves a dynamic check.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 27/ 36

A dynamic discipline of ownership

How does it work? Implementation

« Each object contains a hidden field with the
address of its adopter, or null

« The field is set when adopting and cleared
when abandoning.

« We perform the check when abandoning an
object: its hidden field and the address of (what
the user claims is) the adopter must match.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 28/ 36

An example!

We now explain how the insert operation is
type-checked.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 29/ 36

A dynamic discipline of ownership

The interface for fifos

The FIFO implements the following interface.

type fifo :: TYPE -> TYPE

val create: [a] () -> fifo a

val insert: [al (consumes a, fifo a) -> ()
val retrieve: [a] fifo a -> option a

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 30/ 36

A dynamic discipline of ownership

The insert function

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f)
let ¢ = Cell { data
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;

x; next = () } in

f.tail <- ¢
end
Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 31/36

Non-duplicable permissions Duplicable permissions

»val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢
end

No

n-duplicable permissions Duplicable permissions

e f @ fifo a

® X@a

=

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢
end

Non-duplicable permissions

e f @ fifo a

® X@a

® ¢ @ Cell { data = x;

EE (D fifo a) -> ()

4

let ¢ = Cell { data = x; next = () } in
c.next <- c;

give c to f;

match f with

| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢

end

Non-duplicable permissions

e f @ fifo a

® X @a
® ¢ @ Cell { data = x; next
=c} fifo a) -> ()

let ¢ = Cell { data = x; next = () } in
» c.next <- c;

give c to f;

match f with

| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢

end

Non-duplicable permissions Duplicable permissions

e f @ fifo a

® c@cell a

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
» c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢
end

Non-duplicable permissions Duplicable permissions

e f @ fifo a ® ¢ @ dynamic

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
» give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢
end

Non-duplicable permissions Duplicable permissions

° f @ Empty ® ¢ @ dynamic
{ head: (); tail: () }

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with

| Empty ->
f <- NonEmpty;

f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢

end

Non-duplicable permissions Duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head: (); tail: () }

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->

» f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢
end

Non-duplicable permissions Duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = c; tail: () }

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
» f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢
end

Non-duplicable permissions Duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = c; tail = c }

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;

» f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;

f.tail <- ¢
end

Non-duplicable permissions Duplicable permissions

e |f @ fifo a ® cq@ dynamic

val insert: [a] (consumes a, fifo a) -> ()
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;

» f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;

f.tail <- ¢
end

Non-duplicable permissions Duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = head; tail = .
el ® head @ dynamic

®* tail @ dynamic

val insert: [al] (consumes a, 1.
let insert [a] (x, f) =
let ¢ = Cell { data = x; next = () } in
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;

give tail to f;
f.tail <- ¢

end

Non-duplicable permissions Duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = head; tail = .
el ® head @ dynamic

°* tail @ cell a
fifo a) -> ()

LeEL 1Lisere |pdj (X, 1) =
let ¢ = Cell { data
c.next <- c;
give c to f;
match f with
| Empty ->

f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
» take tail from f;
tail.next <- c;

give tail to f;

f.tail <- ¢

x; next = () } in

end

Non-duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = head; tail
tail }

® head @ dynamic

® tail @ Cell ® next @ dynamic
{ data = data; next
next }

i

Xt = i
® data @ a X ()} in

match f with

| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->

» take tail from f;

tail.next <- c;
give tail to f;
f.tail <- ¢

end

Non-duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = head; tail
tail }

® head @ dynamic

® tail @ Cell ® next @ dynamic

{ data = data; next = c } | 1.

* dataea xt = () } in

give c to f;

match f with

| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;

» tail.next <- c;

give tail to f;

f.tail <- ¢

end

Non-duplicable permissions Duplicable permissions

e f @ NonEmpty e ¢ @ dynamic
{ head = head; tail =)
tail } ® head @ dynamic

* tail @ cell a ® next @ dynamic

LeEL 1Lisere |pdj (X, 1) =
let ¢ = Cell { data
c.next <- c;
give c to f;
match f with
| Empty ->

f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
» tail.next <- c;
give tail to f;

f.tail <- ¢

x; next = () } in

end

Non-duplicable permissions Duplicable permissions

* f @ NonEmpty ® ¢ @ dynamic
{ head = head; tail = .
el ® head @ dynamic

® pext @ dynamic

val insert: [a] (consumes a, f * tail @ dynamic
let insert [a] (x, f) =
let ¢ = Cell { data = x; nexU =\, 5 xn
c.next <- c;
give c to f;
match f with
| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢
| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;
f.tail <- ¢

end

Non-duplicable permissions

* f @ NonEmpty

{ head = head; tail = c }

val insert: [a] (consumes a,

let insert [a] (x, f) =

let ¢ = Cell { data = x; nexU =\, 5 an ’

c.next <- c;

give c to f;

match f with

| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;

f.tail <- ¢
end

Duplicable permissions

® ¢ @ dynamic
® head @ dynamic
® pext @ dynamic

® tail @ dynamic

Non-duplicable permissions

e | f @ fifo a

val insert: [a] (consumes a,

let insert [a] (x, f) =

let ¢ = Cell { data = x; nexU =\, 5 an ’

c.next <- c;

give c to f;

match f with

| Empty ->
f <- NonEmpty;
f.head <- c;
f.tail <- ¢

| NonEmpty { tail } ->
take tail from f;
tail.next <- c;
give tail to f;

f.tail <- ¢
end

Duplicable permissions

® ¢ @ dynamic
® head @ dynamic
® pext @ dynamic

® tail @ dynamic

The current state of MezZo

® The current state of MezZo

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 32/36

Future work

Concurrency in the style of concurrent separation
logic.
Inference e.g. polymorphic function calls.
Proof soundness and type preservation.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 33/36

The prototype

« We have a prototype that successfully
type-checks most of the examples found in our
tutorial paper (see websites).

« We plan on writing an interpreter.

« We started working on better ways to report
error messages.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 34 /36

http://pauillac.inria.fr/~fpottier/index.html

The current state of Mezzo

Demo time

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 35/36

The current state of MezZo

Thank you

Jonathan Protzenko (INRIA) The Mezzo language ML Workshop 2012 36/36

fifo and cell definitions

exclusive data cell a =
| Cell { data: a; next: dynamic }

exclusive data bag a =

| Empty { head, tail: () }

| NonEmpty { head, tail: dynamic; }
adopts cell a

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

length implementation

val rec length [a] (x: list a): int =
match x with
| Nil ->
0
| Cons { tail = tail } ->
1 + length tail
end

val zero = length Nil

(this is a real example from the prototype's testsuite)

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

xswap implementation

exclusive data xpair a b =
XPair { left: a; right: b }

val xswap [a, b] (consumes x: xpair a b):
(| x @ xpair b a) =
let t = x.left in
x.left <- x.right;
X.right <- t

(this is a real example from the prototype’s testsuite)

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

The current state of MezZo

The mode system (1)

Duplicable

Exclusive

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

The current state of MezZo

The mode system (2)

Some types are truly affine, e.qg.
list (xpair int int)

Some other types are abstract, and must be

conservatively treated as affine, such as a in the
body of

length: [a] list a -> int.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

An interface for locks

type lock :: PERM -> TYPE
fact [p :: PERM] duplicable (lock p)
val create: [p :: PERM] () -> lock p
val acquire: [p :: PERM] lock p -> (]| p)
val release: [p :: PERM]

(lock p | consumes p) -> ()

The concept of permission plays very nice with
locks.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

A bonus feature

data outcome (p :: PERM) =
| Success { p }
| Failure { }

val try acquire: [p :: PERM]
lock p -> outcome p

We embed permissions inside a data type definition.
When matching on Success, permission p is added
to the environment.

Jonathan Protzenko (INRIA) The MezZo language ML Workshop 2012 36/36

	Mezzo pitch
	A primer on permissions
	A dynamic discipline of ownership
	The current state of Mezzo

