
Type systems. Why? WHY?

Jonathan Protzenko
jonathan.protzenko@inria.fr

Gallium (the nerds!)

INRIA Junior Seminar

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 1 / 60

jonathan.protzenko@inria.fr


Introduction

Plan
..

..1 Introduction

..2 What is typing?

..3 Let's do some math!

..4 So what do I do?

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 1 / 60



Introduction

Programming

Pretty much everyone
has to do it

(unfortunately).

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 2 / 60



Introduction

Before programming

Young PhD student
wants to write a

numerical simulation.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 3 / 60



Let's use C++!
(Real programmers use C++).



#include <vector>

class B {
int& foo;

};

int main() {
std::vector<B> vec;
B elt;
vec.push_back(elt);

}



Easy?



test.cpp:3:7: error: cannot define the implicit default assignment
operator for 'B', because non-static reference member 'foo' can't
use default assignment operator

class B {
^

/usr/include/c++/4.6/bits/stl_vector.h:834:4: note: in instantiation of
member function

'std::vector<B, std::allocator<B> >::_M_insert_aux' requested here
_M_insert_aux(end(), __x);
^

test.cpp:10:7: note: in instantiation of member function 'std::vector<B,
std::allocator<B> >::push_back' requested here

vec.push_back(elt);
^

test.cpp:4:8: note: declared here
int& foo;

^
/usr/include/c++/4.6/bits/vector.tcc:317:16: note: implicit default copy

assignment operator for 'B' first required here
*__position = __x_copy;





(I had to use \footnotesize to fit the error on the
screen…)



test.cpp: In instantiation of ‘void std::vector<_Tp,
_Alloc>::_M_insert_aux(std::vector<_Tp, _Alloc>::iterator, const
_Tp&) [with _Tp = B; _Alloc = std::allocator<B>; std::vector<_Tp,
_Alloc>::iterator = __gnu_cxx::__normal_iterator<B*, std::vector<B>
>; typename std::_Vector_base<_Tp, _Alloc>::pointer = B*]’:

/usr/include/c++/4.7/bits/stl_vector.h:893:4: required from ‘void
std::vector<_Tp, _Alloc>::push_back(const value_type&) [with _Tp =
B; _Alloc = std::allocator<B>; std::vector<_Tp, _Alloc>::value_type
= B]’

test.cpp:10:20: required from here
test.cpp:3:7: error: non-static reference member ‘int& B::foo’, can’t

use default assignment operator
In file included from /usr/include/c++/4.7/vector:70:0,

from test.cpp:1:
/usr/include/c++/4.7/bits/vector.tcc:336:4: note: synthesized method

‘B& B::operator=(const B&)’ first required here



There are people
working hard to make
sure you get these

errors.



People working on type
systems.



I want to convince you
that there's a good

reason for type systems.



What is typing?

Plan
..

..1 Introduction

..2 What is typing?

..3 Let's do some math!

..4 So what do I do?

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 13 / 60



What is typing?

Typing?

Making sure you don't mix oranges
with apples.

Since 1968! (Algol)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 14 / 60



For performance



Source code.

class Orange {
int size;
color color;

}

int main () {
Orange o(8cm, red);
print(o.size);

}

Compiled code.

o = allocate_block(2)
set(offset(o, 0), 8cm)
set(offset(o, 1), red)
print_int(offset(o, 0))

..

With typing



Source code.

function main () {
var o = {
size: 8cm,
color: red,
origin: "spain",
...

};
console.log(o.size);

}

Compiled code.

o = create_dictionary()
... (several lines) ...
set_key(o, "size", 8cm)
set_key(o, "color", red)
check(o, is_dictionary)
check(o, has_key, "size")
call_print(fetch_key(o, "size"))

print(thing):
depending_on_the_type_of(thing):

if integer:
print_int(thing)

if ...
..

Without typing



What is typing?

For performance

A type describes the shape of an
object.

type = memory representation
⇒ better generated code
⇒ better performance

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 18 / 60



What is typing?

Types help the compiler

We just saw static typing.

Dynamic languages are harder to
compile, because you have to
check the types at run-time.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 19 / 60



For the programmer



What is typing?

For the speed of development

Types won't even allow
you to write some buggy
code.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 21 / 60



What is typing?

Should this code be allowed?

void print(Orange o) {
cout << o.flavor << endl;

}

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 22 / 60



test2.cpp:11:13: error: no member named 'flavor' in 'Orange'
cout << o.flavor << endl;

~ ^
1 error generated.

Error when compiling the code. ..

With typing



Error when running.

Let's hope your code is well-tested...

..

Without typing



What is typing?

Types help the programmer

A type system can rule
out programming

mistakes in advance.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 25 / 60



What is typing?

Example

..

With
typ

ing

If I change the size field into a
diameter field…

The compiler will flag all the
locations in the source code that
need to be changed.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 26 / 60



Testing



What is typing?

Sample program

if (planets are aligned) {
// ...
print(o.flavor);

} else {
// ...
print(o.size);

}

Testing only covers a fraction of the
program.

(Exponential number of configurations to test!)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 28 / 60



What is typing?

An exhaustive analysis

Strong, static typing applies to the
whole program.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 29 / 60



What is typing?

Other reasons

Typing enables…
• reasoning about who-modifies-what (C++
const keyword) in a modular fashion,

• hiding internal representation through type
abstraction,

• easy refactoring of the code,
• better support for other tools (IDEs, analyzers)…

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 30 / 60



Let's do some math!

Plan
..

..1 Introduction

..2 What is typing?

..3 Let's do some math!

..4 So what do I do?

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 30 / 60



How do people like me reason on
type systems?







Let's do some math!

Formally…

These are called derivation rules.

Here's an example:

x instance of class C C has a field f of type t

x.f has type t

(Top part: hypotheses. Bottom part: conclusion.)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 34 / 60



Let's do some math!

Formally…

These are called derivation rules.

Here's an example:

o instance of class Orange
Orange has a field size of type int

o.size has type int

(Top part: hypotheses. Bottom part: conclusion.)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 34 / 60



Let's do some math!

Two important rules
Let's switch to ML, the family of languages that are
being studied in my field.

App

Γ ⊢ f : τ1 → τ2 Γ ⊢ x : τ1

Γ ⊢ f x : τ2

Fun
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun x → e : τ1 → τ2

This is what we call a typing judgement.
Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 35 / 60



Let's do some math!

Is a program well-typed?

Provide a proof derivation, that is, a tower of rules
ending with axioms.

App

Fun

Plus

Var
x : int ⊢ x : int

Constant

x : int ⊢ 1 : int

x : int ⊢ x+ 1 : int

ε ⊢ fun x → x+ 1 : int → int

Constant

ε ⊢ 42 : int

ε ⊢ (fun x → x+ 1) 42 : int

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 36 / 60



Let's do some math!

Why all the pain?

We want to assert that a program is well-typed
because of the following theorem:

Well-typed programs don't go wrong.

Where « wrong » means: run into a segmentation
fault.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 37 / 60



Let's do some math!

Proving this theorem requires…

..1 Defining what it means for a program to run
(« operational semantics »)

..2 Proving that the types remain the same during
execution (« subject reduction »)

..3 Proving that the program actually does
something (« progress »)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 38 / 60



Let's do some math!

Operational semantics

Defines how to perform a computation.

For the purposes of the proof, we define a notion of
substitution, where we replace a variable with an
expression.

let x = e1 in e2 ⇝ e2[e1/x]

(real programs aren't compiled that way!)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 39 / 60



Let's do some math!

Operational semantics

The various reduction steps of a small code snippet:

let x = 2 + 2 in
let y = x * x in
sqrt y

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 40 / 60



Let's do some math!

Operational semantics

The various reduction steps of a small code snippet:

let x = 4 in
let y = x * x in
sqrt y

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 40 / 60



Let's do some math!

Operational semantics

The various reduction steps of a small code snippet:

 
let y = 4 * 4 in
sqrt y

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 40 / 60



Let's do some math!

Operational semantics

The various reduction steps of a small code snippet:

 
let y = 16 in
sqrt y

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 40 / 60



Let's do some math!

Operational semantics

The various reduction steps of a small code snippet:

 

sqrt 16

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 40 / 60



Let's do some math!

Operational semantics

The various reduction steps of a small code snippet:

 

4

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 40 / 60



Let's do some math!

Subject reduction

If the program is well-typed, it won't end up in an
ill-typed state.

  
let y = 16 in
sqrt "ilovethejuniorseminar"

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 41 / 60



Let's do some math!

Subject reduction (traditional)

We then show that if e⇝ e′ and Γ ⊢ e : τ , then
Γ ⊢ e′ : τ , i.e. the types remain throughout
execution.

No surprises!

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 42 / 60



Let's do some math!

Progress

The program is either:

..1 in a configuration where there exists a
reduction that we cannot compute
(segmentation fault):
2 + "coucou"

..2 or in a configuration where we can always
reduce (in the middle of a computation):
2 + 2

..3 or in a configuration where we can no longer
reduce (result of a computation):
4

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 43 / 60



Let's do some math!

Combining all three notions

The combination of operational semantics, subject
reduction and progress gives the original result,

called type soundness:

Well-typed programs don't segfault.

This is a result that we achieve through the use of a
type system.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 44 / 60



How do you determine
whether a program is
well-typed?

You need an algorithm!



Let's do some math!

This is not an algorithm

Fun
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun x → e : τ1 → τ2

You need to know what you want to prove before
proving it.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 46 / 60



Let's do some math!

How do you do it?

• Either require type annotations from the
programmer, like in C++,

• or have the system « guess automatically » the
types, like in ML (type inference).

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 47 / 60



Let's do some math!

What is a good type-checking
algorithm?

• I'm writing a type-checking algorithm. If the
algorithms says « yes », is the program
well-typed? (Correctness)

• I'm writing a type-checking algorithm. If the
algorithms says « no », is the program
ill-typed? (Completeness)

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 48 / 60



After
type-checking…



Let's do some math!

Compiling the program

The type-checking gives theorems for the
original program.

What about the compiled code?

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 50 / 60



Let's do some math!

Another big topic

My team also focuses on compiler
certification.

We don't want the compiler to ruin all the
good work of the type-checker.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 51 / 60



So what do I do?

Plan
..

..1 Introduction

..2 What is typing?

..3 Let's do some math!

..4 So what do I do?

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 51 / 60



So what do I do?

Reasoning on state

There is an implicit notion of state in programs.

int* x = new int;

delete x;
 

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 52 / 60



So what do I do?

Reasoning on state

There is an implicit notion of state in programs.

int* x = new int;

delete x;
 

x goes from valid pointer to invalid pointer

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 52 / 60



So what do I do?

Reasoning on state

There is an implicit notion of state in programs.

int* x = new int;
// x: int*
delete x;
// x: int*

However, the type system just says pointer.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 52 / 60



So what do I do?

Reasoning on state

There is an implicit notion of state in programs.

int* x = new int;
// x: valid int*
delete x;
// x: invalid

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 52 / 60



So what do I do?

However…

Traditional type systems provide no facilities for
reasoning about the state of a program.

We want types to talk about the state an object is in.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 53 / 60



So what do I do?

Why is it difficult?

If the type of an object changes, who sees
the change?

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 54 / 60



So what do I do?

Why is it difficult?

int* x = new int;
// x: valid int*
int* y = x;
// x: valid int*, y: valid int*
// ... (several lines of code) ...
// x: valid int*, y: valid int*
delete x;
// x: invalid, y: valid int*
delete y;
// apocalypse

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 55 / 60



So what do I do?

Why is it difficult?

Do x and y point to the same thing?

Unsolvable problem. We need a type
system with restrictions.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 56 / 60



So what do I do?

General idea

int* x = new int;
// x: valid int*
int* y = x;
// x: valid int*, y = x
// ... (several lines of code) ...
// x: valid int*, y = x
delete x;
// x: invalid, y = x
delete y;
// error: y is invalid

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 57 / 60



So what do I do?

General idea

• We need to keep track of aliasing.
• We have a notion of ownership.

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 58 / 60



So what do I do?

ċank you

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 59 / 60



So what do I do?

So long and
thanks for all

the fish!

Jonathan Protzenko (Gallium (the nerds!)) Type systems. Why? WHY? Junior Seminar 60 / 60


	Introduction
	What is typing?
	Let's do some math!
	So what do I do?

