
The Global Sequence Protocol
a Memory Model for Distributed Systems

Sebastian Burckhardt
sburckha@microsoft.com

Daan Leijen
daan@microsoft.com

Jonathan Protzenko
protz@microsoft.com

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 1 / 36



Distributed Memory

• A server along with multiple clients;

• Concurrent read and writes on the same data structure;

• Communication issues;

• Think of: memory on a modern processor; cloud storage
and Google docs.

Question: what kind of abstraction do we offer to the
programmer?

Answer: a log of updates .

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 2 / 36



Distributed Memory

• A server along with multiple clients;

• Concurrent read and writes on the same data structure;

• Communication issues;

• Think of: memory on a modern processor; cloud storage
and Google docs.

Question: what kind of abstraction do we offer to the
programmer?

Answer: a log of updates .

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 2 / 36



A silly memory model
(But a good excuse to do some formalization)

Our system is: ⟨S,C⟩; S is the server, C(i) are the clients.

We execute programs:

e ::= your-typical-λ-calculus
perform e
get ()

Quick typing rules (σ is the type of state):

• S = f⃗s : list (σ → σ)

• C(i) = e : expr

• perform : (σ → σ) → unit

• get : unit → σ

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 3 / 36



A silly memory model (2)
(But a good excuse to do some formalization)

Initially, S = [] and we assume s0 : σ is the initial (empty) state.

How does the system reduce? For a context C and a given
client:

⟨⃗fs; C[perform f]⟩ ⇝ ⟨⃗fs · f; C[()]⟩
⟨⃗fs; C[get ()]⟩ ⇝ ⟨⃗fs; C[fold(s0, f⃗s)]⟩

• perform f means: push a functional update

• get () means: compose all updates to obtain the current
state.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 4 / 36



A silly memory model (2)
(But a good excuse to do some formalization)

Initially, S = [] and we assume s0 : σ is the initial (empty) state.

How does the system reduce? For a context C and a given
client:

⟨⃗fs; C[perform f]⟩ ⇝ ⟨⃗fs · f; C[()]⟩
⟨⃗fs; C[get ()]⟩ ⇝ ⟨⃗fs; C[fold(s0, f⃗s)]⟩

• perform f means: push a functional update

• get () means: compose all updates to obtain the current
state.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 4 / 36



A silly memory model (3)
(But a good excuse to do some formalization)

This doesn’t work.

• The programming model is great! Actually, it’s
linearizable. (Programmers love it!)

• But, implementing these operational semantics gives
terrible performance (global lock + blocking IO)

A memory model either has strong consistency or
good performance.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 5 / 36



A better memory model (1)

Let’s give up consistency for performance.
(a.k.a. let’s put more stuff in-between ⟨. . .⟩)

A most natural idea: local buffers of updates to improve
performance.

(still not saying what σ is)

New operational model: ⟨S,C⟩
• S = f⃗s : list (σ → σ) (“the server keeps a list of updates”)

• C(i) = (⃗fl, e) : list (σ → σ)× expr (“the client keeps a local buffer

of updates”)

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 6 / 36



A better memory model (2)

Two updated transitions and a new one:

⟨⃗fs; ⟨⃗fl, C[perform f]⟩⟩ ⇝ ⟨⃗fs; ⟨⃗fl · f; C[()]⟩⟩
⟨⃗fs; ⟨⃗fl; C[get ()]⟩⟩ ⇝ ⟨⃗fs; ⟨⃗fl; C[fold(s0, f⃗s · f⃗l)]⟩⟩
⟨⃗fs; ⟨f · f⃗l; C[e]⟩⟩ ⇝ ⟨⃗fs · f; ⟨⃗fl; C[e]⟩⟩

In cloud lingo: “the update has made it to the server”
In processor lingo: “the cache has been drained to the main
memory”

The model is more relaxed (more behaviors): allows for a
more efficient implementation (non-blocking) at the expense of
a more complicated mental model.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 7 / 36



A better memory model (3)

This formalization:

1 is abstract (instantiate σ with a memory store: get TSO)

2 is suitable for the programmer (claim)

3 is not suitable for the implementor (why?)

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 8 / 36



A word about orders

When talking about memory models, we like to order events.

Some (partial) orders:

ar (arbitration order) is the final one everyone agrees
on

rb (returns before) is the side-channel, i.e. the
“wall-clock” order (may or may not be observable)

vis (visibility) means: if (a,b) ∈ vis, then the update a
from client 1 is visible to client 2 before it
performs b

so (session order) is the local (per-client) order

hb (happens before) is so and vis

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 9 / 36



A better memory model: TSO

• The model is still eventually consistent (there is an ar)

• No longer linearizable (rb ̸⊆ ar); no longer sequentially
consistent (vis ̸= ar, a.k.a. there is no single order)

• “If I see things in this order, it’s arbitrated in this order”
(hb ⊆ ar)

• “If I see things in this order, others see them in this order”
(hb ⊆ vis)

A formalization of TSO; an operational vision (as opposed to
equational).

Sebastian Burckhardt.
Principles of Eventual Consistency
In Foundations and Trends in Programming Languages

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 10 / 36



Things you don’t want (1)

Here’s a sample execution.

f⃗s f⃗l e

[] [] perform a
[] a perform b
[] a · b print f⃗s · f⃗l
b · a [] print f⃗s · f⃗l

If the memory model allows this execution, then so (the
session order) is not consistent with ar (the arbitration order),
i.e. so ̸⊂ ar.

Furthermore, if another client sees b · a, then so is not
consistent with vis (the visibility order), i.e. so ̸⊂ vis.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 11 / 36



Things you don’t want (2)

Here’s a sample execution.

client 1 client 2
f⃗s f⃗l e f⃗l e

[] [] perform a [] ()
[] a () [] ()
a [] () [] ()
a [] () [] perform b
a [] () b print f⃗s · f⃗l
b · a [] () [] print f⃗s · f⃗l

If the memory model allows this execution, then vis (the
visibility order) is not consistent with ar (the arbitration order),
i.e. vis ̸⊂ ar.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 12 / 36



A better memory model: not for the implementor

This is what we observe in processors; what the user thinks
about.

We don’t know how Intel engineers implement it in silicon.
This doesn’t explain how to implement it in a networked
context. The model doesn’t convey the fact that some
updates are in transit.

A new model for 1) accurately reflecting the reality of a
networked setting and 2) providing detailed implementation
guidelines at a reasonable level of detail while 3) remaining
understandable by the user.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 13 / 36



A better memory model: not for the implementor

This is what we observe in processors; what the user thinks
about.

We don’t know how Intel engineers implement it in silicon.
This doesn’t explain how to implement it in a networked
context. The model doesn’t convey the fact that some
updates are in transit.

A new model for 1) accurately reflecting the reality of a
networked setting and 2) providing detailed implementation
guidelines at a reasonable level of detail while 3) remaining
understandable by the user.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 13 / 36



A better memory model: not for the implementor

This is what we observe in processors; what the user thinks
about.

We don’t know how Intel engineers implement it in silicon.
This doesn’t explain how to implement it in a networked
context. The model doesn’t convey the fact that some
updates are in transit.

A new model for 1) accurately reflecting the reality of a
networked setting and 2) providing detailed implementation
guidelines at a reasonable level of detail while 3) remaining
understandable by the user.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 13 / 36



GSP: the Global Sequence Protocol

(a.k.a. “TSO for networks”)

1 the model

2 comparison with TSO

3 implementation

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 14 / 36



GSP: the Global Sequence Protocol

(a.k.a. “TSO for networks”)

1 the model

2 comparison with TSO

3 implementation

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 14 / 36



GSP: the Global Sequence Protocol

(a.k.a. “TSO for networks”)

1 the model

2 comparison with TSO

3 implementation

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 14 / 36



GSP: the Global Sequence Protocol

(a.k.a. “TSO for networks”)

1 the model

2 comparison with TSO

3 implementation

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 14 / 36



Yet another operational model

As before, the system is ⟨S,C⟩ where

• S = f⃗s : list (σ → σ)
(“the server keeps a list of updates”)

• C(i) : list (σ → σ)× list (σ → σ)× list (σ → σ)× expr
(“the client keeps… a bunch of stuff”)

C(i) = (⃗fc, f⃗i, f⃗p, e) where:

• f⃗c is the list of confirmed updates

• f⃗i is the list of in-flight updates

• f⃗p is the list of pending updates

f⃗i is important to account for behaviors observed within a
networked setting.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 15 / 36



Yet another operational model

As before, the system is ⟨S,C⟩ where

• S = f⃗s : list (σ → σ)
(“the server keeps a list of updates”)

• C(i) : list (σ → σ)× list (σ → σ)× list (σ → σ)× expr
(“the client keeps… a bunch of stuff”)

C(i) = (⃗fc, f⃗i, f⃗p, e) where:

• f⃗c is the list of confirmed updates

• f⃗i is the list of in-flight updates

• f⃗p is the list of pending updates

f⃗i is important to account for behaviors observed within a
networked setting.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 15 / 36



Yet another operational model

As before, the system is ⟨S,C⟩ where

• S = f⃗s : list (σ → σ)
(“the server keeps a list of updates”)

• C(i) : list (σ → σ)× list (σ → σ)× list (σ → σ)× expr
(“the client keeps… a bunch of stuff”)

C(i) = (⃗fc, f⃗i, f⃗p, e) where:

• f⃗c is the list of confirmed updates

• f⃗i is the list of in-flight updates

• f⃗p is the list of pending updates

f⃗i is important to account for behaviors observed within a
networked setting.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 15 / 36



Important system transitions

All the standard λ-calculus reduction rules

+
⟨⃗fs, ⟨⃗fc, f⃗i, f⃗p, C[perform f]⟩⟩ ⇝ ⟨⃗fs, ⟨⃗fc, f⃗i · f, f⃗p · f, C[()]⟩⟩ Update
⟨⃗fs, ⟨⃗fc, f · f⃗i, f⃗p, C[e]⟩⟩ ⇝ ⟨⃗fs · f, ⟨⃗fc, f⃗i, f⃗p, C[e]⟩⟩ Process
⟨⃗fc · f · f⃗s, ⟨⃗fc, f⃗i, f · f⃗p, C[e]⟩⟩ ⇝ ⟨⃗fc · f · f⃗s, ⟨⃗fc · f, f⃗i, f⃗p, C[e]⟩⟩ Echo
⟨⃗fc · f · f⃗s, ⟨⃗fc, f⃗i, f⃗p, C[e]⟩⟩ ⇝ ⟨⃗fc · f · f⃗s, ⟨⃗fc · f, f⃗i, f⃗p, C[e]⟩⟩ Echo-Other

(f ̸∈ f⃗p)
⟨⃗fs, ⟨⃗fc, f⃗i, f⃗p, C[get ()]⟩⟩ ⇝ ⟨⃗fs, ⟨⃗fc, f⃗i, f⃗p, C[fold(s0, f⃗c · f⃗p)]⟩⟩ Read

Invariants:

• f⃗c is a prefix of f⃗s

• f⃗i is a suffix of f⃗p

(apologies)

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 16 / 36



High-level points about GSP

We are at a lower-level than the previous model.

• We model local, cached knowledge of the state (⃗fc).

• We model network transitions and acknowledgement
(allows for retries)

• This provides much more precise guidelines for
implementing.

With a correct implementation of GSP:

• eventually, f⃗i and f⃗p are empty, and f⃗c is the same for all
clients (program that terminates);

• every update eventually makes it to all other clients; every
redex eventually reduces (infinite executions, e.g. web
services).

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 17 / 36



GSP vs. TSO (1)

GSP is weaker than TSO, i.e. allows more executions.

Worded differently, any TSO execution is admissible on GSP.

How?

• when the server processes an update, dispatch it to all
clients (Process followed by all Echo-* rules)

• therefore, ∀i, f⃗c(i) = f⃗s (remove f⃗c)

• therefore, ∀i, f⃗i(i) = f⃗p(i) (remove f⃗p)

• then: get the previous model, i.e. TSO

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 18 / 36



GSP vs. TSO (2)

The difference lies within the relative ordering of operations.

We take σ = list int, s0 = [].

perform (fun s -> me :: s);
print (me ^ ”got” ^ get ())

If one can observe traces, then here’s a trace ∈ GSP \TSO:

1 got [1; 2]
2 got [2]

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 19 / 36



GSP vs. TSO (3)

Here’s the GSP execution.

Server Client 1 Client 2

f⃗s ⟨⃗fc f⃗i f⃗p e⟩ ⟨⃗fc f⃗i f⃗p e⟩
[] ⟨[], [], [], perform . . .⟩ ⟨[], [], [], ()⟩
[] ⟨[], [1], [1], ()⟩ ⟨[], [], [], ()⟩
[1] ⟨[], [], [1], ()⟩ ⟨[], [], [], ()⟩
[1] ⟨[1], [], [], ()⟩ ⟨[], [], [], ()⟩
[1] ⟨[1], [], [], ()⟩ ⟨[], [], [], perform . . .⟩
[1] ⟨[1], [], [], ()⟩ ⟨[], [2], [2], ()⟩
[1; 2] ⟨[1], [], [], ()⟩ ⟨[], [], [2], ()⟩
[1; 2] ⟨[1; 2], [], [], ()⟩ ⟨[], [], [2], ()⟩
[1; 2] ⟨[1; 2], [], [], print⟩ ⟨[], [], [2], ()⟩
[1; 2] ⟨[1; 2], [], [], ()⟩ ⟨[], [], [2], print⟩

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 20 / 36



GSP vs. TSO (4)

Here’s the TSO execution.

Server Client 1 Client 2

f⃗s ⟨⃗fl, e⟩ ⟨⃗fl, e⟩
[] ⟨[], ()⟩ ⟨[], ()⟩
[] ⟨[], perform . . .⟩ ⟨[], ()⟩
[] ⟨[1], ()⟩ ⟨[], ()⟩
[1] ⟨[], ()⟩ ⟨[], ()⟩
[1] ⟨[], ()⟩ ⟨[], perform . . .⟩
[1] ⟨[], ()⟩ ⟨[2], ()⟩
[1; 2] ⟨[], ()⟩ ⟨[], ()⟩
[1; 2] ⟨[], print⟩ ⟨[], ()⟩
[1; 2] ⟨[], ()⟩ ⟨[], print⟩

With TSO, once an update makes it to the server, it becomes
visible to all the clients.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 21 / 36



GSP vs. TSO (5)

If one cannot observe the ordering in traces, but only the set
of traced events, then GSP and TSO are equivalent.

Intuition: one can always reorder a GSP trace so that it also
could’ve happened under TSO (complicated proof by
Sebastian).

For instance, in the previous example…

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 22 / 36



Implementation concerns

This is all very high-level, abstract and nice. But you don’t
send functions over the network. (Security, practicality.)

Usually, client and server link the same library. You send a
code pointer; i.e. a data type.

With specialization, comes optimizations: if both the server
and client are aware of the type of data, they can compress it.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 23 / 36



A specialized operational model

Still GSP, but now u is our type of updates.

New typing rules:

• S : list u

• C(i) : list u× list u× list u× expr

The client and server agree on a interpretation function
ff : list u → σ and a compression function k : list u → list u.
Now:

• a prefix of the state has type σ (has been evaluated)

• a segment of the state has type list u (has been
compressed)

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 24 / 36



Implementing it (1)
The naïve implementation.

let u⃗c = ref []
let u⃗p = ref []

let perform f =
u⃗p := !u⃗p @ [f];
send f

let get () =
ff (!u⃗c @ !u⃗p)

let _ =
on_receive (fun { client_id; u } ->

if client_id = me then begin
assert (List.hd !u⃗p = u);
u⃗p := List.tl !u⃗p

end;
u⃗c := !u⃗c @ [u]

)
J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 25 / 36



Implementing it (2)

Several problems with this implementation:

• no support for atomicity

• confusing programming model (when are updates pulled
in?)

• more operations needed (check confirmation)

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 26 / 36



Implementing it (3)

We can make GSP transactional by batching updates in rounds
for atomicity and efficiency. We use an outgoing buffer and a
new push operation.

We can simplify the programming model by using an
incoming buffer and a new pull operation. Well-suited for
evented / reactive applications.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 27 / 36



Implementing it (3)
We pick σ = list u.

let in_buffer = ref []
let out_buffer = ref []

let perform u =
out_buffer := !out_buffer @ [u]

let push () =
let u = !out_buffer in
u⃗p := !u⃗p @ [u];
out_buffer := [];
send u

let get () =
ff (List.flatten (!u⃗c @ !u⃗p))

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 28 / 36



Implementing it (3)

let _ =
on_receive (fun { client_id; u } ->

in_buffer := !in_buffer @ u
)

let pull () =
(* pop from u⃗p if needed *)
u⃗c := !u⃗c @ !in_buffer;
in_buffer := []

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 29 / 36



Implementing it (4)

Synchronization primitives?

let flush () =
while (u⃗p <> [])

(* call network code to receive / send *)

flush guarantees our local vision is a prefix of the server’s (i.e.
f⃗p is empty).

Then, one can use “perform; flush” or “flush; get”. It’s as if
these operations were performed on the server.

Equivalent of fences.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 30 / 36



Implementing it (5)

We can improve performance by:

• making the server keep track of “how much” each client
knows;

• evaluating the update log (via ff) up to the minimum
round number;

• compressing rounds before sending them off.

A disconnected client can either ask for a resumption from its
last known round and get a diff, or get a complete state if the
server has compressed already.

S. Burckhardt, D. Leijen, J. Protzenko and M. Fähndrich
Global Sequence Protocol: A Robust Abstraction for
Replicated Shared State.
ECOOP 2015

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 31 / 36



Implementing it (6)

Remember that σ does not model the entire state of the server.

Rather, σ is the specifically shared data structure (a log, a
key-value store, etc.).

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 32 / 36



Some examples for σ

• σ = ref int (shared counter)

• σ = list σ (shared log)

• σ = hash map...

The notion of a data race depends on σ and the operations we
perform over it: a shared counter, or an append-only log have
no conflicts. The ordering of updates is the conflict resolution
procedure.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 33 / 36



A word about conflict resolution

Sometimes you do need to handle conflict resolution. What is
a race?

We assume that the type σ can handle conflict resolution in its
data representation.

Some tricks:

• consider that types always have a default value (no
if-empty-then)

• agree on a merge function.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 34 / 36



A word about compare-and-swap

The type σ could possibly support an update u of the
compare-and-swap variety.

Then, one would have to call flush then read the state to
figure out whether the operation was successful.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 35 / 36



Distributed memory models
(That’s a conclusion.)

A good mental model is a series of updates. Functional, core,
atomic.

Depending on your setting, use a more or less sophisticated
model.

The theory of eventual consistency allows one to precisely
state the properties of a memory model.

Implementing your model requires a greater level of detail and
the addition of programmer-friendly primitives.

J. Protzenko et al. — JFLA’16 The Global Sequence Protocol January 29th , 2016 36 / 36


