
The design of Mezzo,
a new programming language

François Pottier
francois.pottier@inria.fr

Jonathan Protzenko
jonathan.protzenko@inria.fr

INRIA

ICFP'13

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 1 / 26

francois.pottier@inria.fr
jonathan.protzenko@inria.fr

An overview

The Mezzo project is about designing a new programming
language.

Mezzo feels like ML, but blends existing ideas from the
literature to build a type system that talks about state.

One can think of Mezzo as “separation logic turned into a type
system, for ML”. And more.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 2 / 26

Why design a new programming language?

We want to reject dangerous programs (data races, unwanted
sharing).

We want to accept more programs (progressive initialization,
type-changing updates).

We posit that a strict type system makes programs more
amenable to formal reasoning.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 3 / 26

Our contribution

..1 A careful blend of ideas makes up the type system (base
layer).

..2 A mechanism of runtime tests complements the static
discipline (“dynamic” layer).

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 4 / 26

..

The type system of Mezzo

The core concept in Mezzo is that of a permission.

A permission x @ t represents the right to
use x as a variable of type t.

(Read: « x is a t » or « x has type t ».)

Permissions

This is almost like ML.

In ML we use a typing context such as
x : t, y : u

In Mezzo we use a current permission such as
x @ t * y @ u

In other words, permissions are our type system.

The * connective denotes the conjunction of permissions.
Think separation logic.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 7 / 26

Almost?

Permissions come and go.

..

let x = ref 0 in ..
x := true; ..

...

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 8 / 26

Almost?

Permissions come and go.

..

let x = ref 0 in ..
x := true; ..

..

P

..

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 8 / 26

Almost?

Permissions come and go.

..

let x = ref 0 in ..
x := true; ..

...

x @ ref int * P

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 8 / 26

Almost?

Permissions come and go.

..

let x = ref 0 in ..
x := true; ..

....

x @ ref bool * P

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 8 / 26

Almost?

Permissions come and go.

..

let x = ref 0 in ..
x := true; ..

...

We traded x @ ref int for x @ ref bool. This is the way
Mezzo keeps track of state changes (strong update).

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 8 / 26

Almost?

Permissions come and go.

..

let x = ref 0 in ..
x := true; ..

...

We traded x @ ref int for x @ ref bool. This is the way
Mezzo keeps track of state changes (strong update).

We thus need a notion of ownership; this implies keeping
track of aliasing.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 8 / 26

Ownership

• Permissions that denote mutable data are
uniquely-owned, and grant read-write access. They are
exclusive.

• Permissions that denote immutable data are shared, and
grant read-only access. They are duplicable.

• Permissions that are neither exclusive or duplicable are
affine.

A permission x @ t represents the
ownership of a fragment of the heap

denoted by t.

Ownership reasoning is essential in a concurrent setting.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 9 / 26

Ownership

• Permissions that denote mutable data are
uniquely-owned, and grant read-write access. They are
exclusive.

• Permissions that denote immutable data are shared, and
grant read-only access. They are duplicable.

• Permissions that are neither exclusive or duplicable are
affine.

A permission x @ t represents the
ownership of a fragment of the heap

denoted by t.

Ownership reasoning is essential in a concurrent setting.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 9 / 26

An example

Everyone knows the map function.

val map [a, b] (list a, a -> b) -> list b

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 10 / 26

An example

Everyone knows the map function.

val map [a, b] (list a, a -> b) -> list b

(* Classical OCaml version. *)
let map f = function
| [] -> []
| x :: xs -> f x :: map f xs

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 10 / 26

An example

Everyone knows the map function.

val map [a, b] (list a, a -> b) -> list b

(* Classical OCaml version. *)
let map f = function
| [] -> []
| x :: xs -> f x :: map f xs

The ML version is not tail-recursive.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 10 / 26

An example

Everyone knows the map function.

val map [a, b] (list a, a -> b) -> list b

(* Classical OCaml version. *)
let map f = function
| [] -> []
| x :: xs -> f x :: map f xs

The ML version is not tail-recursive.

Let us leverage Mezzo to write a tail-recursive version.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 10 / 26

Tail-recursive map

This code cannot be written in ML.

..head.
tail

.

Cons

. head.
tail

.

Cons

. head.
tail

.

Cell

Cons blocks are immutable.
Cell blocks are mutable.

Cons cells are frozen on-the-fly. They change states.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 11 / 26

Tail-recursive map

This code cannot be written in ML.

..head.
tail

.

Cons

. head.
tail

.

Cons

. head.
tail

.

Cons

. head.
tail

.

Cell

Cons blocks are immutable.
Cell blocks are mutable.

Cons cells are frozen on-the-fly. They change states.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 11 / 26

Tail-recursive map

This code cannot be written in ML.

..head.
tail

.

Cons

. head.
tail

.

Cons

. head.
tail

.

Cons

. head.
tail

.

Cons

. ...

Cons blocks are immutable.
Cell blocks are mutable.

Cons cells are frozen on-the-fly. They change states.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 11 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
..

Function

map1 @ ... * f @ a -> b *
c0 @ Cell { head: b; tail: () } *
xs @ list a

..

Ownership

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
..

Structural

map1 @ ... * f @ a -> b *
c0 @ Cell { head: b; tail: =xs } *
xs @ Nil

..

Singleton

.

.

.

.

.

.

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
..

Freeze

map1 @ ... * f @ a -> b *
c0 @ Cons { head: b; tail: =xs } *
xs @ Nil

.

.

.

.

.

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
..

Freeze

map1 @ ... * f @ a -> b *
c0 @ Cons { head: b; tail: Nil }

.

.

.

.

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
..

Freeze

map1 @ ... * f @ a -> b *
c0 @ list b

..

State change

.

.

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
..

Refine

map1 @ ... * f @ a -> b *
xs @ Cons { head: a; tail: list a } *
c0 @ Cell { head: b; tail: () }

.

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
..

Refine

map1 @ ... * f @ a -> b *
xs @ Cons { head: =h; tail: =t } *
h @ a * t @ list a *
c0 @ Cell { head: b; tail: () }

.

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
..

Refine

... *
h @ a * t @ list a *
c0 @ Cell { head: b; tail: () }

.

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
.
..

Assign

... *
h @ unknown * t @ list a *
c0 @ Cell { head: b; tail: =c1 } *
c1 @ Cell { head: b; tail: () } *

.

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
.
.
..

Freeze

... *
h @ unknown * t @ list a *
c0 @ Cons { head: b; tail: =c1 } *
c1 @ Cell { head: b; tail: () } *

.

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
.
.
.
..

Reasoning

... *
h @ unknown * t @ unknown *
c0 @ Cons { head: b; tail: =c1 } *
c1 @ list b

.

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

Reasoning

... *
h @ unknown * t @ unknown *
c0 @ Cons { head: b; tail: list b }

.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

Explaining the loop

val rec map1 [a, b] (
f: a -> b,
c0: Cell { head: b; tail: () },
xs: list a

): (| c0 @ list b)
= ..
match xs with
| Nil ->

c0.tail <- xs; ..
tag of c0 <- Cons ..

| Cons { head = h; tail = t } -> ..
let c1 = Cell { head = f h; tail = () } in
c0.tail <- c1; ..
tag of c0 <- Cons; ..
map1 (f, c1, t) ..

end
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

Reasoning

... *
h @ unknown * t @ unknown *
c0 @ list b

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 12 / 26

How does it all work?

Thanks to…

singleton types that encode equalities (~pure formulas) and
allow rewriting,

structural types that track the branch we are in,

folding of inductive predicates,

…we manage to implement a very fine-grained reasoning
within the type system.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 13 / 26

Other interesting results

Other results that are not attainable in ML:

• in-place list reversal, while tracking ownership,

• List.map with sharing, while still having type
val map: (list a, a -> b) -> list b

• in-place zipper (with ownership results), in-place tree
traversal,

• iterators, with a precise ownership formulation.

Some of these are classical separation logic results.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 14 / 26

..

Breaking out of
the type system

Why?!

We're very happy with the type system but…

…aliasing on arbitrary, mutable data structures, cannot be
expressed.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 16 / 26

Two options

• extend the type system (complicated), or…

•

This is one of our key design choices.

Systems for reasoning statically exist; we want to explore a
different tradeoff.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 17 / 26

Two options

• extend the type system (complicated), or…

• rely on dynamic checks

This is one of our key design choices.

Systems for reasoning statically exist; we want to explore a
different tradeoff.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 17 / 26

An example with complex ownership

We need to represent a graph.

Imagine a DFS. We need to mark (mutable) nodes.

Multiple pointers to the same node. How do we guarantee the
unique owner property for nodes?

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 18 / 26

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

duplication

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

.

.

Uniqueness guaranteed via a runtime test

..

x @ node

.

x @ dynamic

.

give

.
x @ dynamic

.

c

.

o

.

p

.

y

.
x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take

.

x @ node

.

?

..

Uniqueness guaranteed via a runtime test

Under the hood

We have a notion of adopter and adoptee.

• Adopters declare the type of their adoptees.

• Adoptees maintain a pointer to their adopter telling
whether they're “given” or “taken”.

We have a machine-checked proof of soundness (F. Pottier).

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 20 / 26

Advantages

• the adopter is exclusive: the take operation is lock-free;

• possible extension to duplicable adopters using
compare-and-swap

From the programmer's point of view, a clear distinction
between what is statically checked and what is not.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 21 / 26

..

The state of Mezzo

Theory

• the type system of Mezzo is sound (F. Pottier)

• programs written in Mezzo are data-race free (T.
Balabonski)

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 23 / 26

Implementation

• a type-checker has been written,

• requires type annotations in a few cases,

• connected to frame inference (separation logic) and join
(shape analysis in abstract interpretation)

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 24 / 26

Living with Mezzo

Programming in Mezzo:

• forces the programmer to understand the ownership
structure precisely,

• allows expressing strong invariants,

• allows new idioms (initialize-then-freeze).

It requires extra work from the programmer (error messages,
type annotations). We believe the guarantees (data-race
freedom, ownership properties) are worth the effort!

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 25 / 26

The final word

Mezzo: a programming language to talk about state,
ownership and aliasing. The type system is sound.
Programs written in Mezzo are data-race free.

New idioms, less bugs

Programming in Mezzo: come and see us at HOPE 2013
for a demo about iterators.

Learning about Mezzo: visit our website at
http://protz.github.io/mezzo

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 26 / 26

http://protz.github.io/mezzo/

How does it work? Adoption

An object can be declared as adopting other objects.

data mutable graph a =
Graph { roots: list dynamic } adopts node a

and mutable node a =
Node { children: list dynamic; payload: a }

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 26 / 26

How does it work? Adoption (cont'd)

(* x @ node a ∗ f @ graph a *)
give x to f;
(* x @ dynamic ∗ f @ graph a *)

x @ dynamic means “xmay currently be adopted by some
other object”.

This is a duplicable permission.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 26 / 26

How does it work? Abandon

We traded x @ cell a for x @ dynamic, which is duplicable
but hides the true type of x.

(* x @ dynamic ∗ f @ graph a *)
take x from f;
(* x @ node a ∗ f @ graph a *)

We regain the original permission, but we need to make sure
no object can be abandoned twice: abandon involves a
dynamic check.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 26 / 26

How does it work? Implementation

• Each object contains a hidden field with the address of its
adopter, or null

• The field is set when adopting and cleared when
abandoning.

• We perform the check when abandoning an object: its
hidden field and the address of (what the user claims is) the
adopter must match.

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 26 / 26

DFS (in surface syntax)

(* Assumes all the nodes in the graph are set to [false]. *)
val traverse (g: graph bool): () =
let rec visit (n: dynamic | g @ graph bool): () =
take n from g;
if n.payload then
(* The node has been visited already *)
give n to g

else begin
(* The node has not been visited yet. *)
let children = n.children in
(* Mark it as visited. *)
n.payload <- true;
(* We keep a copy of [children] (list dynamic is duplicable). *)
give n to g;
(* Recursively visit the children. *)
list::iter (children, visit)

end
in
(* Visit each of the roots. *)
iter (g.roots, visit)

Jonathan Protzenko — INRIA Mezzo: a new programming language ICFP'13 26 / 26

