
Why design a new programming language?

The Mezzo case

François Pottier
francois.pottier@inria.fr

Jonathan Protzenko
jonathan.protzenko@inria.fr

INRIA

FSFMA'13

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 1 / 43

francois.pottier@inria.fr
jonathan.protzenko@inria.fr


Some background

Plan
..

..1 Some background

..2 Going beyond type-checking

..3 The story about state

..4 Designing a type system with state

..5 A glimpse of Mezzo

..6 Conclusion
Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 1 / 43



Type-checking: a way to reason
about your programs



Some background

How do we see type-checking?

• a way of assigning types to objects, thus
• gaining static information about the memory
shape of objects, while

• enabling the programmer to reason about their
programs.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 3 / 43



These properties are static.

You can deduce them by analyzing your program
before running it.



Some background

How do we sell type-checking?

• The ability for the programmer to avoid bugs.
• The ability for the compiler to emit better code.
• Guarantees about safety (e.g. the program
won't crash): C#, ML, Java…

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 5 / 43



Type-checking occupies a sweet
spot in our landscape.



Some background

Why do we love typing so much?

• Requires no user input; the system can
automatically deduce properties.

• Good properties: decidable, reasonable
computational complexity.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 7 / 43



Going beyond type-checking

Plan
..

..1 Some background

..2 Going beyond type-checking

..3 The story about state

..4 Designing a type system with state

..5 A glimpse of Mezzo

..6 Conclusion
Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 7 / 43



Going beyond type-checking

How does one push a type system
further?

extend type-check more programs;

refine provide stronger guarantees about
programs.

Here are some directions that have been explored
already.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 8 / 43



Going beyond type-checking

Direction #1: the proof assistant

One may want to…
• extend the theoretical power of the type
system;

• and lose automation;
• the user has to painfully write types by hand;
• these types are actually proofs.

Example: ..

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 9 / 43



Going beyond type-checking

Direction #2: automated theorem
provers

One may want to…
• keep a simple type system;
• have a language of pre- and post-conditions
on the side;

• delegate the task of proving to SMT-solvers;
• only semi-automated; SMT-solvers are
unpredictable and not very robust.

Example: ..

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 10 / 43



Going beyond type-checking

Direction #3: Abstract
interpretation

One may want to…
• design a framework to analyze the range of
possible values;

• either in compilers (flags) or external tools
(static analyzers).

Example: the Astrée static
analyzer. ..

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 11 / 43



There's a whole range of possible directions.

There are some design choices that we do not wish
to reproduce.

What's our « business model »? Refine the type
system of ML to talk about state.



The story about state

Plan
..

..1 Some background

..2 Going beyond type-checking

..3 The story about state

..4 Designing a type system with state

..5 A glimpse of Mezzo

..6 Conclusion
Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 12 / 43



The story about state

A pervasive notion

• Most programs carry an inherent notion of
state.

• A socket may move from « valid socket » to
« invalid socket ».

Yet, no mainstream type system offers facilities for
reasoning about state.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 13 / 43



The story about state

Reasoning about state…

let x = create_socket () in
(* x @ socket (valid) *)
let y = x in
(* x @ socket (valid), y @ socket (valid) *)
...
(* x @ socket (valid), y @ socket (valid) *)
destroy_socket x;
(* x @ socket (invalid), y @ socket (valid) *)
destroy_socket y;
(* apocalypse! *)

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 14 / 43



The story about state

Reasoning about state is hard

Are x and y the same thing?

This is the aliasing problem, which is not decidable
in general.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 15 / 43



The story about state

Question

Can we design a better type system that would:
• help the programmer reason about state, thus
• ruling out incorrect behaviors, while
• enabling new programming idioms?

This is the Mezzo project.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 16 / 43



Designing a type system with state

Plan
..

..1 Some background

..2 Going beyond type-checking

..3 The story about state

..4 Designing a type system with state

..5 A glimpse of Mezzo

..6 Conclusion
Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 16 / 43



Designing a type system with state

Permissions

A variable does not have a fixed type.

Instead, we may possess a permission x @ t,
allowing us to use x in certain ways, depending on
t.

This permission may disappear, to be replaced by a
different one.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 17 / 43



Designing a type system with state

Immutable vs. mutable

The system maintains the following invariant:
• if x is a mutable object, there exists at most one
permission to read and write x

• if x is an immutable object, there exists
arbitrarily many permissions to read x

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 18 / 43



Designing a type system with state

Why the distinction?

This distinction is central in the design of Mezzo.
• State changes become type changes.
• Since mutable objects have a unique owner, it
is now safe for the type of an object to change.

This enables us to track the state of objects.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 19 / 43



Designing a type system with state

Why the distinction?

• In a concurrent context, the unique-owner
property statically guarantees that the program
is data-race free.

• In terms of reasoning, I can now state that no
other part of the program may access my
mutable memory. This is a separation property.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 20 / 43



A glimpse of Mezzo

Plan
..

..1 Some background

..2 Going beyond type-checking

..3 The story about state

..4 Designing a type system with state

..5 A glimpse of Mezzo

..6 Conclusion
Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 20 / 43



A simple example: concatenation
of immutable lists.



Cons
head
tail

x₁

Cons
head
tail

x₂

Cons
head
tail

xₙ

Nil...

xs

Cons
head
tail

y₁

Cons
head
tail

y₂

Cons
head
tail

yₙ

Nil...

ys



What happens when one
concatenates two immutable lists

xs and ys?



Cons
head
tail

Cons
head
tail

Cons
head
tail

Nil...

xs

Cons
head
tail

y₁

Cons
head
tail

y₂

Cons
head
tail

yₙ

Nil...

ys
Cons
head
tail

x₁

Cons
head
tail

x₂

Cons
head
tail

xₙ

...

zs



This creates sharing.



A glimpse of Mezzo

Harmless sharing

let xs : list int = ... in
let ys : list int = ... in
let zs : list int = append(xs, ys) in
...
This is harmless. We would like to accept this code.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 26 / 43



A glimpse of Mezzo

Potentially harmful sharing

What if the lists have mutable elements?
let xs : list (ref int) = ... in
let ys : list (ref int) = ... in
let zs : list (ref int) = append(xs, ys) in
...
Some elements are accessible via xs and zs, or via ys and zs.
This is potentially dangerous.

We would like to accept this code yet prevent the programmer

from using (say) xs and zs as if they were physically disjoint.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 27 / 43



A glimpse of Mezzo

Reasoning with permissions

InMezzo, the first code snippet gives rise to three permissions:

xs @ list int
ys @ list int
zs @ list int
All three lists can be freely used in the code that follows.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 28 / 43



A glimpse of Mezzo

Reasoning with permissions

The first two lines of the second code snippet give rise to:

xs @ list (ref int)
ys @ list (ref int)
These permissions are consumed at line three, which gives
rise to:

zs @ list (ref int)

At the end, zs can be used, but xs and ys have been

invalidated.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 29 / 43



A glimpse of Mezzo

How does this work?

The type of the function append is:

[a] (consumes list a, consumes list a) -> list a
so a call is in principle type-checked as follows:

(* xs @ list t * ys @ list t * ... must exist here *)
let zs = append(xs, ys) in
(* zs @ list t * ... exist here *)
The available permissions vary with time.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 30 / 43



A glimpse of Mezzo

How does this work?

The system knows that

• xs @ list int is a duplicable permission, whereas

• xs @ list (ref int) is not: it is an affine permission.

A caller of append can give up one copy of xs @ list int and
keep one copy. The permission is effectively not consumed.

No such trick is possible with xs @ list (ref int).
Thus, append is type-checked once, but behaves differently at
different call sites.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 31 / 43



A glimpse of Mezzo

Still…how do we type-check this?

let x = create_socket () in
(* ? *)
let y = x in
(* ? *)
...
(* ? *)
destroy_socket x;
(* ? *)
destroy_socket y;
(* ? *)

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 32 / 43



A glimpse of Mezzo

Still…how do we type-check this?

let x = create_socket () in
(* ? *)
let y = x in
(* ? *)
...
(* ? *)
destroy_socket x;
(* ? *)
destroy_socket y;
(* ? *)..

• Keep track of local aliasing relationships.

• Declare types valid_socket and
invalid_socket

• Declare destroy_socket: (consumes x:
valid_socket) -> (| x @ invalid_socket)

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 32 / 43



A glimpse of Mezzo

Still…how do we type-check this?

let x = create_socket () in
(* x @ valid_socket *)
let y = x in
(* x @ valid_socket * x @ =y *)
...
(* x @ valid_socket * x @ =y *)
destroy_socket x;
(* x @ invalid_socket * x @ =y *)
destroy_socket y;
(* Error: could not find permission y @ valid_socket;

the only permissions available for it are:
y @ invalid_socket

*)

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 33 / 43



A glimpse of Mezzo

An escape mechanism

The mechanisms presented so far remain relatively rigid.

We offer a mechanism, called adoption/abandon, that:

• allows one to gain the freedom to alias objects, at the
expense of

• paying runtime checks whenever they want to use the
object.

The runtime checks guarantee that only one person owns the

object. If the programmer makes a mistake, the program

aborts.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 34 / 43



A glimpse of Mezzo

An escape mechanism (2)

All type systems are a tradeoff between complexity
and dynamic checks (Java, C++, C#…).

We drew a line: non-tree-shaped ownership
patterns cannot be treated statically.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 35 / 43



Conclusion

Plan
..

..1 Some background

..2 Going beyond type-checking

..3 The story about state

..4 Designing a type system with state

..5 A glimpse of Mezzo

..6 Conclusion
Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 35 / 43



Conclusion

The Mezzo language

Mezzo is a language that:

• takes the usual ingredients of a type system, but
• provides stronger guarantees, while still
• retaining some key properties: automated
reasoning, predictability…

This is achieved through a careful blending of
runtime tests / static guarantees.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 36 / 43



Conclusion

The Mezzo language

Programs written in Mezzo enjoy strong
guarantees:

• the type system rules out representation
exposure;

• avoids unwanted sharing;
• guarantees data-race freedom.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 37 / 43



Conclusion

The Mezzo language

We also believe that:

• writing a program in Mezzo force the
programmer to have a clear understanding of
ownership,

• thus giving better guarantees about the
program, as well as

• making it more amenable to program proof
(long-term goal).

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 38 / 43



Conclusion

The state of Mezzo

The type system has been proved sound using the
Coq proof assistant.

We have a prototype type-checker that successfully
type-checks our library as well as numerous
examples (several thousand lines).

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 39 / 43



Conclusion

Future direction #1

Concurrency.

There are several concurrency patterns.

• How can we axiomatize them? (What is their
type?)

• Is it sound? (Can we add these to our proof?)
• Shall we add new concurrency patterns in
Mezzo?

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 40 / 43



Conclusion

Future direction #2

Inference.

Inference is a challenge; we want to limit manual
intervention from the programmer, but:

• some situations require type annotations;
• can we predict which situations will require
manual hints?

• can we improve our prototype with a better
type-checking algorithm?

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 41 / 43



Conclusion

Future direction #3

Arithmetic.

Like in ML, there are bounds-check on array
accesses.

• Can we extend the permission mechanism to
also talk about arithmetic?

• Can we have the type-checker perform
arithmetic reasoning? (SMT-Solver)

• How viable is this approach, can we extend it
beyond arithmetic?

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 42 / 43



Conclusion

More information

You can visit the Mezzo website

F. Pottier and J. Protzenko, Programming with
permissions in Mezzo, to appear in International
Conference on Functional Programming (ICFP),
Sep 2013.

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43

http://pauillac.inria.fr/~protzenk/mezzo-lang/


Conclusion

The implementation of append

data list a =
| Nil
| Cons { head: a; tail: list a }

val rec append [a] (
consumes xs: list a,
consumes ys: list a

) : list a =
if xs then

Cons { head = xs.head; tail = append (xs.tail, ys) }
else

ys

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43



Conclusion

The (other) implementation of append

data mutable cell a =
| Cell { head: a; tail: () }

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43



Conclusion

The (other) implementation of append

val rec appendAux [a] (
consumes dst: cell a,
consumes xs: list a,
consumes ys: list a)

: (| dst @ list a)
=
if xs then begin

let dst' = Cell { head = xs.head; tail = () } in
freeze (dst, dst');
appendAux (dst', xs.tail, ys)

end
else

freeze (dst, ys)

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43



Conclusion

The (other) implementation of append

val append [a] (
consumes xs: list a,
consumes ys: list a

) : list a =
if xs then begin

let dst = Cell { head = xs.head; tail = () } in
appendAux (dst, xs.tail, ys);
dst

end
else

ys

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43



Conclusion

The implementation of append (mutable)

data mutable mlist a =
| MNil
| MCons { head: a; tail: mlist a }

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43



Conclusion

The implementation of append (mutable)

val rec append1 [a]
(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =
match xs.tail with
| MNil -> xs.tail <- ys
| MCons -> append1 (xs.tail, ys)
end

val append [a] (consumes xs: mlist a,
consumes ys: mlist a) : mlist a =

match xs with
| MNil -> ys
| MCons -> append1 (xs, ys); xs
end

Jonathan Protzenko (INRIA) The Mezzo language FSFMA'13 43 / 43


	Some background
	Going beyond type-checking
	The story about state
	Designing a type system with state
	A glimpse of Mezzo
	Conclusion

