
Thèse

présentée à
l’Université Paris Diderot

pour obtenir le titre de
Docteur
spécialité

Informatique

Mezzo
a typed language for safe effectful concurrent programs

soutenue par
Jonathan Protzenko

le 29 septembre 2014

Jury

Président M. Roberto Di Cosmo
Rapporteurs M. Lars Birkedal

M. Nikhil Swamy
Examinateurs M. Jean-Christophe Filliâtre

M. David Pichardie
M. Don Syme

Directeur M. François Pottier

Abstract

The present dissertation argues that better programming languages can be designed and
implemented, so as to provide greater safety and reliability for computer programs. I sustain
my claims through the example of Mezzo, a programming language in the tradition of ML,
which I co-designed and implemented. Programs written in Mezzo enjoy stronger properties
than programs written in traditional ML languages: they are data-race free; state changes can
be tracked by the type system; a central notion of ownership facilitates modular reasoning.

Mezzo is not the first attempt at designing a better programming language; hence, a first
part strives to positionMezzo relative tootherworks in the literature. I present landmark results
in the field, which served either as sources of inspiration or points of comparison. The subse-
quent part is about the design of the Mezzo language. Using a variety of examples, I illustrate
the language features as well as the safety gains that one obtains by writing their programs in
Mezzo. In a subsequent part, I formalize the semantics of theMezzo language. Mezzo is not just
a type system that lives on paper: the final part describes the implementation of a type-checker
forMezzo, by formalizing the algorithms that I designed and the various ways the type-checker
ensures that a program is valid.

Résumé

Cette thèse décrit comment obtenir de plus fortes garanties de sûreté pour les programmes
en utilisant Mezzo, un langage de programmation inspiré par ML, et muni d’un système de
types novateur. Les programmes écrits en Mezzo bénéficient de plus fortes garanties, com-
parés à des programmes équivalents écrits dans un dialecte deML: absence de séquencements
critiques (« race conditions »), suivi des changements d’états au travers du système de types,
et une notion de possession qui facilite le raisonnement modulaire et la compréhension des
programmes.

Mezzo n’est pas la premier langage à s’attaquer à cet objectif louable : une première partie
s’efforce donc de situer Mezzo dans son contexte, en présentant des travaux emblématiques de
la recherche en langages de programmation, travaux qui ont constitué des sources d’inspiration
ou ont servi de points de comparaison. Une seconde partie présente le langage. Tout d’abord,
au travers d’une riche palette d’exemples, qui permettent d’illustrer les fonctionnalités du lan-
gage ainsi que les gains de sûreté qui en découlent. Puis, dans une partie suivante, de manière
formelle, en détaillant les différentes règles qui gouvernent le système de types de Mezzo.
Mezzo n’existe pas seulement sur le papier : une dernière partie décrit la manière dont le lan-
gage est implémenté, en formalisant les algorithmes utilisés dans le typeur et en détaillant les
techniques utilisées pour déterminer la validité d’un programme.

Remerciements
On a parfois pu en douter, mais après quatre années d’un labeur qui fut, naturellement, fébrile et ininterrompu,
cette thèse est finalement arrivée à son terme. Rédiger les remerciements au sondeFIP, par une paisible après-midi
du mois d’août, me permet ainsi de clore une époque heureuse à Rocquencourt. Une légère angoisse m’étreint,
néanmoins, à la pensée de tous ceux qui liront ce bref texte, et qui frémiraient de n’y pas voir leur nom : je leur
présente mes excuses d’avance pour ces regrettables oublis.

Mes remerciements vont en tout premier lieu àmondirecteur de thèse, quim’a accompagné tout au longde ces
années. Sa disponibilité et sa patience, alliées à une connaissance encyclopédique, et une compréhension toujours
fine des problèmes en jeu, m’ont permis de bénéficier d’un encadrement scientifiquement irréprochable.

Mes remerciements les plus chaleureux vont également àmes rapporteurs, Lars Birkedal et Nikhil Swamy, qui
ont tous deux accepté de lire plus de deux cents pages d’un texte aride durant leurs vacances d’été. Je ne peux que
m’incliner devant un tel dévouement. Je suis également heureux de compter parmi mon jury des chercheurs que
je côtoie et que j’apprécie depuis plusieurs années ; c’est une réelle joie de soutenir devant un tel public.

L’équipe Gallium est également pour beaucoup dans ce dénouement heureux : les discussions autour d’un
café, qu’il ait été produit par l’ancienne ou la nouvelle machine, ont toujours été hautement enrichissantes, qu’il
s’agisse de systèmes de types, de catégories, de tanks, ou de voile. Un environnement d’excellence, et pas seule-
ment scientifique, donc.

Mezzo a été l’occasion de collaborer avec d’autresmembres. L’arrivée des stagiaires Henri, Armaël ouCyprien
a été particulièrement motivante pour mon propre travail ; la collaboration avec les post-doctorants Thibaut et
Pierre-Évariste a été également hautement fructueuse. Quand la saturation s’est fait proche, la collaboration avec
Thomas et Gabriel sur Articheck a été très agréable : mes félicitations à ces deux très bons éléments.

Aumoment de franchir la porte du bâtiment 14, je me rappelle mes premiers mois où, jeune étudiant fraîche-
ment débarqué, mes connaissances en système de types se révélèrent vacillantes. Nicolas et Benoît m’ont, à cette
époque, consacré du temps et de l’énergie pour combler mes lacunes, tout comme, plus tard à d’autres occasions,
Gabriel, Didier ou Xavier. Cette thèse leur doit également.

La liste des membres de Gallium que j’ai croisés est trop longue pour écrire une note personnelle à chacun :
je terminerai simplement en saluant le stoïcisme de Jacques-Henri qui a bravement enduré la playlist éclectique
de FIP dans le bureau.

Mon séjour à l’INRIA ne s’est, fort heureusement, pas limité au bâtiment 14 : je suis reconnaissant à tous les
collègues et amis avec qui j’ai pu discuter autour d’un café. Par ordre croissant de bâtiments : Thierry, Pauline,
Sylvain (bâtiment 8), toute l’équipeRAPdu bâtiment 9, quim’a toujours accueilli dans un environnement sportif,
lui aussi, d’excellence : Mathieu, Emanuele, Renaud, Sarah, Henning, Cédric, et surtout Philippe ; Victorien (bâ-
timent 15) ; Elisa et Stéphanie (bâtiment 16) ; Stéphane (bâtiment 25). Et mes excuses à tous ceux que j’oublie.

Beaucoup me connaissent aussi comme un sportif régulier et le plus gros contributeur de messages inutiles
à la mailing-list inria-sport-team-roc : un grand merci à tous ceux qui m’ont motivé pour devenir un nageur et
un coureur. Une pensée particulière va à Philippe, qui mérite le titre de « directeur sportif » de ma thèse, dont
les conseils sportifs ou humains ont été toujours précieux. J’espère me montrer digne de ses enseignements en
courant, après deux semi-marathons, unmarathon à Seattle. La section course à pied a été ma porte d’entrée dans
le club des sportifs : merci à Alexandre et Benoît pour m’avoir poussé initialement, et à tous les autres qui sont
venus courir un jour ou l’autre, la liste est trop longue pour être recopiée ici. Mention spéciale à Thierry, Pauline
et Thomas, pour avoir couru un ou plusieurs semi-marathons avec moi. La section natation n’est pas en reste :
Alexandre,Mathieu, Emanuele, Renaud et Cédric en ont été les dignesmembres, avec, plus occasionnellement, la

iv

participation deThierry, Sarah, Pauline ouHenning. Un seul nommanque cruellement à l’appel, celui de Philippe
Robert. J’espère qu’un thésard plus doué saura le motiver pour aller fendre les flots de la piscine du Chesnay de
son crawl puissant.

Un grand plaisir au cours de ces années à Rocquencourt a été d’organiser le séminaire des doctorants, et d’aller
traquer des victimes dans les divers bâtiments du centre. D’abord avec Emanuele etMathieu, puis avec Elisa. Une
pensée émue pour tous ceux qui, sous l’effet de la surprise, se sont vus répondre « oui » pour donner un exposé,
et tous mes vœux de succès aux repreneurs, Pauline, Jacques-Henri et Matteo.

Sur une note plus personnelle, dans le flot de souvenirs de ces années de thèse, ressortent des soirées, des
week-ends ou des après-midis, en compagnie d’amis proches. Sans eux, ces années auraient assurément été plus
austères et étriquées. Je ne crois pas nécessaire de m’étendre sur le soutien et l’amitié qu’ils m’ont témoignés. Je
peux, en revanche,mentionnerBenoît, qui n’a jamaismanqué une occasion de partager un picon-bière bienmérité
après une rude journée à l’INRIA ; Alexandre, pour les bières autour de ses souvenirs en Alpha-Jet, les journées à
la bibliothèque, le canapé-lit aux États-Unis « de l’Amérique » ou (bientôt) à Paris, ou encore pour avoir enduré
la revue de presse du matin pendant deux années et demi ; Emanuele et Yasmine, pour l’hospitalité rue d’Aligre,
les balades à Paris, le hipster-style, et pour m’avoir fait découvrir la gastronomie et la culture italiennes ; Mathieu
et Jessica, qui m’ont supporté en vacances en Grèce, et dont le barbecue m’a réconcilié avec la banlieue ouest ;
Nicolas, pour les discussions jusqu’à tard sur le sens de l’existence ; Sarah ou Henning, pour les pique-niques, les
sorties jusqu’à trop tard ; Thomas et Pauline, pour les dîners et les bières autour d’idées de start-up ; Anne-Gaëlle
etMarie pour les soirées à la colocation et les bières après ; Stéphanie, pour toutes les excursions enNormandie et
ailleurs ; Ornella, Pauline,Dimitri, qui étaient loinmais toujours au bout du téléphone ; et tous ceux que j’oublie…

Stéphane et Chrysanthi reçoivent une section à part ; peut-être parce que j’ai passé plus de soirées qu’ailleurs
Boulevard de Port-Royal ; peut-être encore parce que Google Now! a fini par me proposer les temps de trajet
jusqu’à chez eux (l’apprentissage automatique, c’est merveilleux) ; peut-être enfin parce qu’ils m’ont supporté
pendant trop de week-ends. Merci pour tout.

Je termine par ma famille, pour la présence et le soutien. Et le chat, aussi, qui remercie tous ceux et celles qui
l’ont gardée pendant mes trop nombreuses absences. Meow. 😸

Conventions
The present manuscript uses the following conventions.

⌨ Interactive sessions In some situations, I show a code sample alongwith the response of the associated compiler.
Such passages are denoted by a keyboard symbol in the margin.

Reference to the code I will sometimes, when describing an algorithm formally, point to the corresponding lo-
cation in the source code of Mezzo that implements the algorithm. The line numbers refer to the source

Ty
pe

Ch
ec

ke
r.
ml

:8
63 code at the time of this writing, that is, revision 58f9a30bd.

Substitution I believe I have seen all possible variants of the substitution notation in the literature: [x′/x]P,
[x/x′]P, P[x′/x] and P[x/x′]. In this document, I use: [x′/x]P as “substitute x′ for x in P”.

Digressions In some technical passages, I sometimes reflect on alternative design choices, or explain a point that
may seem minor compared to the rest of the discussion.

1 This paragraph is a digression.

Pronouns We denotes my advisor François Pottier and I, and is used whenever talking about joint work, such as
the design ofMezzo. I denotes the present author, and is used whenever talking about work that is inmajor
part mine, such as the implementation. They is used as a gender-neutral singular pronoun. While this usage
seems to be debatable [Wik14b], the ChicagoManual of Style seems to side with the present author in that
it is perfectly acceptable.

vi

Contents
I Introduction 1

1 About type systems 3
1.1 Languages and type systems . 4
1.2 What is the purpose of a type system? . 5
1.3 The purpose of building a better type system . 7
1.4 Mezzo: a better typed language for ML . 8
1.5 Playing with Mezzo . 11
1.6 About the proof of soundness . 11

2 A brief survey of advanced type systems 13
2.1 Early, seminal works . 13
2.2 Close sources of inspiration . 16
2.3 Other related works . 21

II A taste of Mezzo 23

3 AMezzo tutorial 25
3.1 Three small examples . 25
3.2 Lists . 31
3.3 Breaking out: arbitrary aliasing of mutable data structures . 41

4 Bits from the standard library 49
4.1 Nesting . 49
4.2 Adoption/abandon as a library . 54
4.3 One-shot functions . 56
4.4 Rich booleans . 56
4.5 Locks and conditions, POSIX-style . 59
4.6 Landin’s knot (recursion via the mutable store) . 63
4.7 Other interesting bits . 64

5 Writing programs inMezzo 65
5.1 Ownership and function signatures . 65
5.2 Higher-order effects and crafting signatures . 68
5.3 Reifying coercions . 70
5.4 Object-oriented programming . 72

III Mezzo, formalized 77

6 AMezzo reference 79

vii

Contents

6.1 Differences with the informal presentation . 79
6.2 Meta-variables . 80
6.3 Types and kinds . 80
6.4 Type definitions . 81
6.5 Modes and facts . 82
6.6 Programs . 83
6.7 Module layer . 85

7 TranslatingMezzo to SimpleMezzo 87
7.1 Examples . 88
7.2 Kind-checking . 90
7.3 Translation . 95

8 Type-checking SimpleMezzo 99
8.1 Memory model . 99
8.2 Subsumption rules . 101
8.3 Type-checking rules . 103
8.4 The duplicable and exclusive modes . 108
8.5 Facts . 112
8.6 Variance . 116
8.7 Signature ascription . 117
8.8 Differences between Simple Mezzo and Core Mezzo . 118
8.9 Reflecting on the design of Mezzo . 120

IV ImplementingMezzo 125

9 Normalizing permissions 129
9.1 Notations . 129
9.2 Requirements for a good representation . 129
9.3 Prefixes . 130
9.4 Normal form for a permission . 132
9.5 Treatment of equations . 135
9.6 Data structures of the type-checker . 138
9.7 A glance at the implementation . 138

10 A type-checking algorithm 143
10.1 Typing rules vs. algorithm . 145
10.2 Transformation into A-normal form . 145
10.3 Helper operations and notations . 146
10.4 Addition . 146
10.5 Type-checking algorithm . 147
10.6 About type inference . 149
10.7 Non-determinism in the type-checker . 150
10.8 Propagating the expected type . 151
10.9 A glance at the implementation . 151

11 The subtraction operation 153
11.1 Overview of subtraction . 153
11.2 Subtraction examples . 154
11.3 The subtraction operation . 156
11.4 Implementing subtraction . 163
11.5 A complete example . 168
11.6 Relating subtraction to other works . 169
11.7 A glance at the implementation . 170

viii

Contents

11.8 Future work . 174

12 Themerge operation 175
12.1 Illustrating the merge problem . 175
12.2 Formalizing the merge operation . 179
12.3 An algorithmic specification for merging . 180
12.4 Implementation . 187
12.5 Relation with other works . 191
12.6 A glance at the implementation . 191
12.7 Future work . 193

V Conclusion 195

13 Summary; perspectives 197
13.1 A brief history of Mezzo . 197
13.2 Looking back on the design of Mezzo . 198
13.3 Type system vs. program logic . 198
13.4 Perspectives . 199

List of Figures 201

Bibliography 205

ix

Part I

Introduction
1 About type systems

1.1 Languages and type systems . 4

1.2 What is the purpose of a type system? . 5

1.3 The purpose of building a better type system . 7

1.4 Mezzo: a better typed language for ML . 8

1.5 Playing with Mezzo . 11

1.6 About the proof of soundness . 11

2 A brief survey of advanced type systems

2.1 Early, seminal works . 13

2.2 Close sources of inspiration . 16

2.3 Other related works . 21

Madame, je ne suis pas un grand homme, ce n’est pas la
peine de venir chercher sur moi desmatériaux pour écrire
des thèses…

Lu Xun, LaMauvaise Herbe (traduction Pierre Ryckmans)

The goal of this part is twofold.
The first chapter is a gentle introduction to the problem at stake. I seek to help the reader
become acquainted with the landscape of programming language research: I present the
challenges associated with designing a new language (there are many!) and the kind of
guarantees one seeks to obtain by using a type system. The discussion is illustrated using
code samples written in various languages.
The second chapter attempts to give a tour of related work, so as to better highlight the big
research topics of the past few years. This chapter hopefully can be read by a student who
wishes to get a (brief) overviewof the narrowdomainwhich Iwas preoccupiedwith during
the past four years. This chapter is thus fairly high-level; later chapters feature, whenever
applicable, specific comparisons with similar works in the literature.

1. About type systems
Ever since the field of computer science was pioneered, people have been trying to interact with machines. The
internet folklore is rich with stories about how real programmers would directly poke into the front panels of
computers and fix them over the phone [Pos83].

“Jimwas able to repair the damage over the phone, getting the user to
toggle in disk I/O instructions at the front panel, repairing system ta-
bles in hex, reading register contents back over the phone. Themoral
of this story: while a Real Programmer usually includes a keypunch
and line printer in his toolkit, he can get along with just a front panel
and a telephone in emergencies.

Figure 1.1: A story about a real programmer

But for all the manliness that comes out of being a “real programmer”, most people agree nowadays that using
a programming language is certainly a much more convenient way to talk to a computer, rather than punch cards
or front panels.

Indeed, just like people (supposedly) talk to each other in English, French or some other natural language,
programmers talk to the computer using a programming language. And, just like natural languages, the first com-
puter languages were rather primitive. Figure 1.2 shows a sample program written for the lunar landing module
of the Apollo 11 mission; it is a wonder people actually landed on the moon.

TC BANKCALL # TEMPORARY, I HOPE HOPE HOPE

CADR STOPRATE # TEMPORARY, I HOPE HOPE HOPE

TC DOWNFLAG # PERMIT X-AXIS OVERRIDE

ADRES XOVINFLG

TC DOWNFLAG

ADRES REDFLAG

TCF VERTGUID

STARTP67 TC NEWMODEX # NO HARM IN ”STARTING” P67 OVER AND OVER

DEC 67 # SO NO NEED FOR A FASTCHNG AND NO NEED

CAF ZERO # TO SEE IF ALREADY IN P67.

TS RODCOUNT

CAF TEN

TCF VRTSTART

Figure 1.2: Assembly listing for the Apollo Guidance Computer – lunar landing module

Scientists thus strived to design better programming languages. The flurry of programming languages that
have been invented since the dawn of computing is a testimony to the countless hours programming language

3

1. About type systems

(PL) researchers have devoted to this noble endeavour. Wikipedia [Wik14a] lists more than six hundred “non-
esoteric” programming languages.

Some even seemed to think that finding the “right” programming language was within reach.

“At the present time I think we are on the verge of discovering at last
what programming languages should really be like. I look forward
to seeing many responsible experiments with language design dur-
ing the next few years; and my dream is that by 1984 we will see a
consensus developing for a really good programming language (or,
more likely, a coherent family of languages). (…) At present we are
far from that goal, yet there are indications that such a language is
very slowly taking shape.

Figure 1.3: Donald Knuth on programming languages [Knu74]

History, quite unfortunately, tends to prove the author of the quote above wrong. Not only have many new
languages been created since 1974, but also present languages are far from satisfactory. The quest for a better
programming language thus goes on.

1.1 Languages and type systems

Early on, programming languages such as Algol 60 and Fortran were equipped with basic type systems. Algol,
for instance, would classify program values according to their types. There were only a few types, such as REAL,
INTEGER, BOOL and ARRAY.

Consider a program which tries to access an array. If the program is given, say, an integer instead of an array,
the program is going to read memory it was not intended to read. This can cause the program to crash or, worse,
to run into completely random, erratic behavior, with worrying consequences (Figure 1.4).

“An unreliable programming language generating unreliable pro-
grams constitutes a far greater risk to our environment and to our so-
ciety than unsafe cars, toxic pesticides, or accidents at nuclear power
stations. Be vigilant to reduce that risk, not to increase it.

Figure 1.4: Tony Hoare on programming languages [Hoa81]

The point of having a type system is to eliminate entirely this family of errors by ensuring, say, that programs
which expect arrays only ever receive arrays as inputs.

Nowadays, the guarantees offered by type systems vary, but the original idea remains the same: rule out some
run-time errors by making sure the program manipulates values with the right types, thus guaranteeing some de-
gree of safety.

In the case of Algol and Fortran, type-checking would be performed by the compiler, so as to rule out errors
in advance. This is not always the case. Indeed, a commonway to classify modern type systems is to separate them
into dynamic type systems and static ones.

Dynamic type systems check on the fly that valueshave the correct type. Here is an ill-typed fragmentof Javascript,
a rather popular programming language. We try to perform a function call; the expression we call is not a
function but a string, meaning that the call cannot take place. In PL lingo, the program cannot reduce and
execution is stuck.

⌨ ”lambda”();

TypeError: ”lambda” is not a function

The error will not pop up until we actually try to run the program. That is, the programmer is free to write
this script and load it into a web page. The error will not appear until execution reaches this piece of code.

4

1.2. What is the purpose of a type system?

Static type systems, conversely, attempt to detect errors before the program is actually run. Here is the same
example, this time fed into an OCaml compiler.

⌨”lambda”();;

Error: This expression has type string

This is not a function; it cannot be applied.

The compiler will not even attempt to run the program above; the type system detected in advance that this
program would cause an error at execution and consequently refuses to even compile it.

Both typing disciplines have their respective merits, and people have argued endlessly about which of the two
is the better one, using constructive arguments such as “I need a PhD in type systems to understand an OCaml
error message, types kill my productivity” or “How can these people programwithout a typing discipline, they’re
wasting their time on trivial mistakes they could catch easily, they are morally wrong”.

Amusingly, this dispute is not new and already made headlines thirty years ago. (Figure 1.5).

“The division of programming languages into two species, typed
and untyped, has engendered a long and rather acrimonious debate.
One side claims that untyped languages preclude compile-time er-
ror checking and are succinct to the point of unintelligibility, while
the other side claims that typed languages preclude a variety of pow-
erful programming techniques and are verbose to the point of unin-
telligibility.

Figure 1.5: John Reynolds on typed vs. untyped languages [Rey85]

It turns out these two options are not mutually exclusive: mainstream languages such as C++ and Java, while
being statically typed, offer mechanisms (dynamic_cast and instanceof respectively) for dynamically examining
the type of an object.

In spite of having happily written thousands of lines of Javascript, I remain at the time of this writing amember
of Gallium, a team where OCaml originated! I will therefore from now on focus on mostly-static type systems,
and argue that the quest for a safer programming language mandates the use of a better static type system.

1.2 What is the purpose of a type system?

As stated earlier, the purpose of a type system is to rule out certain errors. Here is a series of examples, written in
various languages, that illustrate the kind of guarantees that typical, real-world type systems offer (or fail to offer).

Rejecting programs

As our first example, let us consider the following Java program, which is accepted by any conforming Java com-
piler.

⌨public class Test {

static void printHello(String what) {

System.out.println(”Hello, ”+what+”!”);

}

public static void main(String[] args) {

printHello(”thesis”);

}

}

5

1. About type systems

jonathan@ramona:/tmp $ javac Test.java && java Test

Hello, thesis!

The program is valid: it does not run into a memory error at execution-time. This property is guaranteed by the
type system: this is known as type soundness.

Here is a modified version that is rejected by the type system.

⌨ public class Test {

static void printHello(String what) {

System.out.println(”Hello, ”+what+”!”);

}

public static void main(String[] args) {

printHello(2014);

}

}

Test.java:7: error: method printHello in class Test cannot be

applied to given types;

printHello(2);

^

required: String

found: int

The type system is right in rejecting this example: we do not know what the behavior of the resulting program at
execution-time would be. The type system of Java provides type safety: well-typed Java programs do not run into
memory errors at execution.

Some more advanced type systems provide more guarantees than memory safety. Some research languages
such as F*, Coq or Agda [SCF+11, The06, Nor09] are equipped with type systems that can prove functional cor-
rectness, that is, that the program does what it is intended to do.

Conversely, some weaker type systems do not guarantee memory safety. Here is the example of a C++ pro-
gram that, although accepted by clang++, runs into a memory error at run-time.

⌨ int main() {

int* i = new int;

delete i; delete i;

}

protzenk@sauternes:/tmp $ clang++ test2.c && ./a.out

*** Error in ‘./a.out’: double free or corruption (fasttop):

0x000000000183a010 ***

Here, the type systemwas not smart enough to figure out something was wrong with this program. Conceptually
speaking, the variable i went from “valid pointer to an integer” to “invalid pointer to an integer”. Yet, in the eyes
of the type-checker, the variable i keeps the int* type throughout the whole code sample, which is the only
requirement for the calls to delete to be legitimate.

Incidentally, we are lucky the program crashed: it may be the case that the program returns an incorrect result
without notifying the user an error happened. We have no guarantees about a buggy program; anything may
happen.

This example illustrates a first important question about any type system: what are the kind of guarantees that
the type system offers? Worded differently,what is the class of errors that a type system promises to rule out statically?

Accepting programs

A way to look at a type system is whether it rejects or not an incorrect program. Another way to look at it is to
see whether it accepts or not a correct program. I have not defined what it means for a program to be “correct” or

6

1.3. The purpose of building a better type system

“incorrect” yet; let us just assume that a program that terminates by producing the intended result for all inputs is
correct, and that any other program is incorrect.

As it turns out, type systems are inherently imperfect. Just like theymay accept buggy programs, theymay fail
to accept correct programs. Here is an example, written in Haskell. The x variable is defined to be either a string
or an integer; the program then prints x. The program may run into an error if x happens to be an integer and
we try to print it as a string; the condition, however, is always true, meaning that x is always a string, and that the
program never runs into an error at execution. This program, quite unfortunately, is rejected by the type system:
we say that the type system is incomplete.

⌨Prelude> let x = if True then ”hello” else 4 in putStrLn x

<interactive>:7:31:

No instance for (Num [Char]) arising from the literal ‘4’

Possible fix: add an instance declaration for (Num [Char])

A type system would have to perform remarkably sophisticated reasoning to figure out that such a program will
not run into an error. Indeed, the boolean expression can be arbitrarily complex; whether this program runs into
a run-time error may not even be decidable!.

This highlights another important feature of type systems: they are fundamentally limited, in that they will
fail to accept correct programs. Indeed, the more programs one wishes to accept, the more complex the resulting
type system ends up.

This an important issue when designing a new type system: one is always faced with a compromise between:

• the class of errors one wishes to rule out,

• the class of programs one wishes to accept,

• the complexity of the underlying theory.

One may find the last point remarkably restrictive. However, trying to keep the type system simple is not
necessarily a bad thing. First, type systems have been successful partly because they enjoy a number of properties,
such as being decidable. A more sophisticated type system risks losing these properties. Second, accepting more
exotic programs is not necessarily a good thing either; the Haskell program above, for instance, makes little sense.
Rejecting a program and telling the user to better structure their code is a good property of a type-checker.

1.3 The purpose of building a better type system

We have seen a few type systems in action; each one of them provides a different set of guarantees (rules out
certain classes of errors), and has its own expressive power (accepts certain classes of programs). If one takes an
existing type system, and pushes it further, what would this “better” type system look like?

The present dissertation is about the design and implementation ofMezzo, a new programming language that
takes the type system of ML further. Figure 1.6 illustrates what one can expect of Mezzo compared to ML. Each
potato denotes the set of programs accepted by the type system.

Incorrectprograms Thetype systemofMezzo provides strictly stronger guarantees than that ofML: anywrong
program rejected by ML will also be rejected by Mezzo (). Mezzo will also reject programs that ML accepts:
the new type system rules out more incorrect programs (). Mezzo, however, is not complete, meaning some
incorrect programs are still accepted ().

There is one color missing out of the 8 possible ones: no incorrect program that was previously rejected by
ML becomes accepted by Mezzo.

Correct programs The sets of programs accepted by Mezzo and ML are incomparable.
Some correct programs that were previously rejected will become accepted : the new type system is more

sophisticated and can therefore “understand” programs that were rejected before.

7

1. About type systems

good programs
bad programs

 M
L

 M

ez
zo

Figure 1.6: Mezzo vs. ML: potato, potato

Some correct programs that were previously accepted will become rejected : the new type system imposes
a stronger discipline. Programs that previously relied on implicit invariants will now see the type-checker try-
ing to verify these implicit invariants. In some cases, the invariants will be too complex for the type-checker to
understand, meaning that the program will have to be rewritten in a different style.

Some correct programs that were previously accepted will remain accepted : the type system will still cover
previously-working programs.

Some correct programs that were previously rejected will remain rejected : the type system will still fail to
account for correct programs.

1.4 Mezzo: a better typed language forML

Thecontributions ofMezzo are along twomain axes. First,Mezzo offers a sophisticated type system that rules out
more programmingmistakes, hence providing greater confidence in programswrittenusing the language. Second,
Mezzo also offers the programmer a carefully crafted surface language, which provides natural, familiar constructs
while hiding the complexity of the underlying theory.

The run-time model of Mezzo is the same as OCaml; therefore, this dissertation focuses solely on the de-
sign and implementation of the language and the corresponding type-system. A regrettable restriction is that
the OCaml run-time system is (currently) not concurrent; any concurrent Mezzo program will thus be executed,
sadly, in a sequential manner.

Mezzo ships with an interpreter and a compiler. The compiler works by translating a Mezzo program into an
equivalent OCaml program; the resulting OCaml program can then be compiled by the regular OCaml compiler.

Mezzo takes its inspiration fromML: the language has first-class functions, data types, pattern-matching, poly-
morphism, type inference. The type system of Mezzo, however, goes further than that of a regular variant of ML,
as it features more sophisticated reasoning. Therefore (§1.3), some programs that were previously rejected will
now be accepted (the type system is smarter) and some programs that were previously accepted will be rejected
(they will be deemed unsafe per the standards of the new language).

The distinctive feature of Mezzo is that it fundamentally reasons about ownership of data structures. This in
turn allows the user to reason about aliasing as well as state. Mezzo is made up of two layers. The core, static layer
combines several type-theoretic mechanisms to create an expressive, albeit somewhat restrictive static discipline.
To evade the restrictions of the static discipline, Mezzo complements the static layer with a dynamic layer that
uses run-time tests to regain static type information.

Mezzo has been mechanically proved sound [BPP14a]. Mezzo enjoys the standard soundness result, which
is that “well-typed programs do not go wrong”. Mezzo, however, also enjoys a stronger result, which is that well-

8

1.4. Mezzo: a better typed language for ML

typed programs have no data races.

Modular reasoning

As I argued earlier, gaining confidence in theprogramsonewrites is fundamental. One achieves greater confidence
by reasoning about whether the program achieves the intended purpose.

Reasoning about programs with mutable state is hard, yet important: a purely functional approach is not
always practical. (Even using monads, one can only separate effectful code from non-effectful code, thus offering
no way to reason in a fine-grainedmanner about mutations.) Indeed, in the general case, whenever one inspects a
piece of code that performs mutations, one needs to think about the effects the snippet may perform: is this piece
of code going to increment a global counter? Is this snippet going to modify the mutable objects I pass it? If I
send a reference to a mutable object on another thread, am I allowed to further modify the object?

Having untracked effects prevents modular reasoning: one cannot reason about a piece of code in isolation,
and one has to think about whatever effects the rest of the program may perform. The programmer thus has to
reason about the entire program, which is often beyond the cognitive power of normal humans.

Sadly, mainstream programming languages do not provide facilities for reasoning about programs. Right now,
the programmer is left with documentation. Documentation is usually text, which states (imprecisely) what guar-
antees the function expects (the function’s pre-condition), as well as what guarantees the function provides (the
function’s post-condition). This text is not machine-checked, meaning that one relies on the good will and skill
of the programmer to enforce proper usage of the code.

Documentation can also take the form of conventions: the Google C++ style guide [goo], for instance, man-
dates that reference arguments be labeledwith const, meaning that a function that takes a const T& cannotmodify
it, while a function that takes a T* will, by convention, modify it. These code conventions, when combined with
extra “lint” tools, provide a limited set of guarantees.

I argue that these checks should be performed by the compiler; worded differently, the reasoning that yields
stronger confidence in programs should be part of the core language, and not be a feature provided by external
tools. The purpose of this thesis is thus to present the design of a language where modular reasoning about effects
is made possible, and incorporated in the language from the ground up.

Towards a notion of ownership

If we want to reason in a modular fashion about effects, we need to describe in a rigorous manner the pre- and
post-conditions of functions. In the presence of global state, we will thus mention whatever effects the function
may perform: a function which increments a global counter will now advertise that it may modify this global,
shared object.

I argue that ownership is an intuitive and natural notion that allows one to reason efficiently about their pro-
grams. In Mezzo, at any program point, there is a notion of what “we” own and what “others” may own. Here,
“we” should be understood as “the currently executing piece of code”, while “others” may refer to other running
threads, or the calling context. Ownership may be understood in various ways; in Mezzo, whatever is mutable
has a unique owner. This enables reasoning such as “I own (uniquely) this mutable reference, therefore others
cannot modify it”. If a function demands ownership of the reference, I know that it may modify it. Conversely, if
a function does not demand ownership of the reference, I can assume that the reference will remain unchanged
throughout the function call.

Ruling out mistakes

Reasoning about ownership yields significant benefits. A major one is in concurrent settings, where one needs to
make sure that concurrent accesses to a shared mutable piece of data are protected. By incorporating reasoning
about ownership directly within the type-system, we guarantee that Mezzo programs are data-race free.

Another class of bugs that Mezzo rules out entirely is representation exposure. Consider the code Figure 1.7.
The code implements a Set interface. The purpose of the interface is to prevent the client from breaking the
internal invariants of Set, which are as follows.

• A Set has a fixed maximum size maxSize initially set when the object is created.
• There are, at any time, curSize elements in the Set; besides, curSize is at most maxSize.

9

1. About type systems

import java.util.*;

public class Set<T> {

final int maxSize;

int curSize;

LinkedList<T> elements;

Set(int maxSize) {

this.maxSize = maxSize;

this.curSize = 0;

elements = new LinkedList<T>();

}

boolean add(T elt) {

if (curSize == maxSize)

return false;

elements.push(elt);

curSize++;

return true;

}

List<T> asList() {

return elements;

}

}

Figure 1.7: A buggy Java program

• The Set is implemented using a list of elements; at any time, the length of elements is equal to curSize.

Quite unfortunately, the under-caffeinated developer who wrote this code implemented an asList method. The
Set class happens, internally, to also use a list for representing the set of elements. This means that by returning
a pointer to the internal list, the asList function allows its caller to gain access to the same list which is used
internally. The caller may thus modify it and break the invariants. By stating that a piece of mutable data has a
unique owner, Mezzo prevents this sort of bugs: the list is owned either by the Set instance, by the caller of the
asListmethod, but not by both at the same time. An ownership transfer takes place when entering and returning
from the function call: invariants are checked across function calls.

Enabling new programming patterns

By ensuring that pieces ofmutable data have a unique owner,Mezzo can trackmutations in a fine-grainedmanner.
Type-changing updates, for instance, are possible in Mezzo. I may freely change the type of a reference; the type-
checker is happy with it, since both the compiler and I know that other parts of the program are not aware of the
existence of the reference, for I am its unique owner.

The programmer is thus free to perform more powerful mutations than what is traditionally possible in ML.
This enables new programming patterns, such as progressive initialization, or memory re-use.

As a type system

We chose to seek greater confidence through the use of a type system. Several approaches have been explored.
Some works, for instance, embed already type-checked, existing programs in a program logic. We made a design
decision, and chose not to aim for full program correctness, but rather a stronger notion of correctness through
the use of a type system.

10

1.5. Playing with Mezzo

In our eyes, the advantages are many. Type-checking is pervasive throughout all stages of the development
cycle; it helps the programmer shape their code rather than retrofit a program proof on top of already-written
code; it helps the compiler generate better code; we envisioned, for the long term, a two-stage process where
users would type-check their code in a powerful type system, thus yielding enough knowledge and structure to
perform a subsequent proof of the program more easily.

1.5 Playing withMezzo

Online

Thehomepage ofMezzo is at http://protz.github.io/mezzo. The curious readermaywant to play with the web-
based versionofMezzo at http://gallium.inria.fr/~protzenk/mezzo-web/. The sources forMezzo are available
at https://github.com/protz/mezzo; the web frontend is in the web/ subdirectory and can be setup locally.

On your computer

Mezzo can also be used in a more traditional way. Using OPAM [opa], one merely needs to type opam install

mezzo. This installs a Mezzo binary in the path called mezzo. By default, calling mezzo foo.mz will type-check the
file foo.mz. Adding a -i argument will interpret the file. The adventurous reader who wishes to compile Mezzo
code can use the sample project at https://github.com/protz/mezzo-sample-project/.

1.6 About the proof of soundness

The present dissertation does not cover the proof of soundness for Mezzo, which was carried out by F. Pottier et
al. It does seem tempting to include the formalization of Mezzo as an appendix, so as to make this document a
completeMezzo reference. Themetatheory, however, is complex, and requires quite a bit of an explanation (about
30 pages of a fairly dense journal paper). It thus seems hard to include the formalization “as is”. The interested
reader will most certainly want to read the submitted journal paper [BPP14a]; the first half of the paper contains
material that has been updated and included in the present dissertation (Chapter 3, Chapter 7).

11

http://protz.github.io/mezzo
http://gallium.inria.fr/~protzenk/mezzo-web/
https://github.com/protz/mezzo
https://github.com/protz/mezzo-sample-project/

2. A brief survey of
advanced type systems
I mentioned earlier (§1.4) that Mezzo allows one to reason about state, aliasing and ownership. Many languages
have been designed over the past decades, aiming at a better static control of mutable state. These keywords thus
surely ring a bell for any reader familiar with the field.

The present chapter attempts to do a quick panorama of the field. I highlight early, seminal works that had
a significant influence on later works (§2.1), and that articulated key concepts. Then, I detail a few sources of
inspiration for Mezzo (§2.2). These comparisons feature forward pointers to specific parts of the dissertation,
should the reader wish to come back to this chapter later. Finally, I also mention similar efforts in other domains,
that however did not constitute sources of inspiration for Mezzo (§2.3). These efforts may relate to another pro-
gramming paradigm, or may be too low-level for us to take inspiration from; they help, nonetheless, locateMezzo
within the larger field of partial static verification of programs.

This chapter remains very general; later chapters (Chapter 8, Chapter 11, Chapter 12), when tackling specific
issues, provide their own sections (§8.9, §11.6, §12.5) devoted to the comparison and the articulation of links
with other works.

Ahistory of linear type systems, regions and capabilities is available online [Pot07], which featuresmanymore
works, although not necessarily related to Mezzo. The historical timeline has been reproduced in Figure 2.1.

2.1 Early, seminal works

Effect systems

In the late 80s, Gifford and Jouvelot [GJSO92,GJLS87]worked on FX, a languagewhere effects are trackedwithin
the type system. The system has inference and polymorphism for both types and effects [JG91]. Effects are
coarse: a function, for instance, may be annotated with pure if it performs no side-effects, or with the read or
write keyword.

The system provides type-checking rules built on an algebra of effects. A typing judgement, in their system,
takes the form of E : T ! F, meaning that type-checking E yields type T with effect F. The typing rule for applica-
tion, shown below, states that the effect of evaluating a function call is the greatest effect of evaluating the function
and of evaluating the argument.

A ⊢ E0 : (proc F T0 T) ! F0 A ⊢ E1 : T0 ! F1
A ⊢ (E0 E1) : T !max(F0, F1)

This early strand of work seems to introduce first the key idea that effects can be tracked within the type system.
This idea influenced a whole series of subsequent languages.

While FXdoes indeed provide stronger static properties and facilitatesmodular reasoning, the authorsmostly
sell this new type systemas away for the compiler toperformautomatic optimizations, such asparallelismormem-

13

2. A brief survey of advanced type systems
A (very partial) history

linear types
(Wadler)

uniqueness types
(Clean)

monads
(Peyton Jones & Wadler)

regions
(Baker)

regions
(Tofte & Talpin)

calculus of capabilities
(Crary et al.)

FX
(Gifford & Lucassen)

alias types
(Smith, Walker, Morrise")

adoption and focus
(Fähndrich & DeLine)

Cyclone
(Morrise" et al.)

linear regions are all you need
(Fluet, Ahmed, Morrise")

monadic regions
(Fluet & Morrise")

1987

1990

1993

1999

2000

2002

2004

2006Sing#
(Fähndrich et al.)

Figure 2.1: A history of linear type systems, regions and capabilities (F. Pottier)

oization. (As a historical side note, they also present FX as a way to solve the interaction between polymorphism
and side-effects – the value restriction had not been discovered back then.)

Linear types

Philip Wadler, around the same time, notes that the concepts of linear logic [Gir87], where a hypothesis may
only be used once, can naturally be extended to a programming language, where some types may be made lin-
ear [Wad90]. Variables with a linear type must be used exactly once. This introduces the idea that the objects
that one manipulates may be considered as resources: possessing a file handle means, for instance, that there is an
underlying system resource that exists once and that needs to be destroyed exactly once.

Themain selling point thatWadler brings forward is efficiency: having linear variables leads to amore efficient
implementation strategy. This may sound surprising, as one may expect nowadays to reason about linearity for
safety reasons. The paper, however, is from the early 90’s and the context is that of purely functional languages,
which suffered from performance issues.

Linear values cannot be duplicated, nor discarded. The former implies that some operations, such as writing
into an array, can now be implemented destructively instead of performing copies. Indeed, as long as the array is
linear, there is only one reference to it at any program point. Hence, it is safe tomodify the same array all through-
out the program rather than allocate copies of it. The latter point implies that the destruction of linear objects is
explicit (e.g. by calling a special destroy function), which leads to an efficient implementation technique: allo-
cations and deallocations of linear objects do not require the use of a garbage-collector since they are known in
advance.

Wadler accurately notes that a system where everything is linear would be too restrictive. He thus divides
his types in two categories: linear types, and nonlinear types. Data types come in two flavors: ¡K (linear) and K
(nonlinear). A lambda-abstraction may be annotated with ¡ to create a linear arrow. Nonlinear closures cannot
capture linear variables.

14

2.1. Early, seminal works

The typing rules of his system reflect this fact (Figure 2.2). For instance, a variable may only be typed in
the singleton context, meaning that it has to be used exactly once. Naturally, the rule for application splits the
environment to make sure we don’t use a variable twice.

The way these restrictions are lifted for nonlinear variables is by means of two rules, called LLC-Kill and
LLC-Copy.

LLC-Var
x : t ⊢ x : t

LLC-App
Γ1 ⊢ M : t⊸ u Γ2 ⊢ N : t

Γ1, Γ2 ⊢ M N : u

LLC-KillIfDup
Γ ⊢ M : u

Γ, x : t ⊢ M : u

LLC-CopyIfDup
Γ, x : t, x : t ⊢ M : u

Γ, x : t ⊢ M : u

Figure 2.2: Sample typing rules for linear lambda calculus

Interestingly enough, Wadler notes that the user may want to temporarily “freeze” a mutable variable into a
read-only version. This allows one to temporarily duplicate, say, an array: indeed, it is safe for multiple people to
just read at the same time. This is done using a syntactic scoping criterion and a special let! (x) y = e1 in e2

construct, where x is temporarily made nonlinear in e1 via the alias y. The fact that y is scoped only in e1 means
that no nonlinear alias to x can escape. This construct would fail to work if there were any sort of global mutable
state, such as ML references, since one could naturally write y into the global state.

Interestingly, the construct above forces an evaluation order, which deserves to be noted since we are in the
context of a lazy, purely functional language, Indeed, the parts that access the array as read-only (that is, e1) have
to be evaluated before it may be mutated (in e2).

Wadler also notes that this would probably play badly with a type inference algorithm in the style of Damas-
Milner.

Temporarily relaxing aliasing restrictions has been a pervasive problem in the literature back from the early
90’s until today. Each of the various strands of works features its ownmechanism for doing so. WhileWadler uses
a syntactic criterion (just likeCyclone, which Imention in §2.3), Crary et al. [CWM99], for instance, use bounded
quantification, that is, a type-theoretic mechanism. In their calculus of capabilities, {ρ1} ≤ {ρ+}, meaning that
the capability for owning the region ρ uniquely (which allowsdestroying) canbeweakened into aweaker capability
for just accessing the region. By writing a function with bounded quantification ∀(ρ ≤ ρ+1), the body of the
function may freely alias the capability since it is not assumed to be unique. The caller, however, may own a
unique capability that, by virtue of subtyping, can also serve as a capability for calling the function. The caller, by
unification, regains its unique capability after calling the function. The mechanism is sound because capabilities
cannot be stored. The design choice made in Mezzo was to use runtime tests to relax aliasing restrictions.

Regions

A last strand of work that turned out to be remarkably influential is regions. Baker [Bak90] notes in 1990 that the
US Department of Defense declined to add a Garbage Collector (GC) to its official language Ada83, because of
performance concerns. He thus tackles the issues of static analyses that could possibly help handle the allocation
and deallocation of objects better.

Noting the link between instantiating a polymorphic type scheme and inlining the said function, Baker pushes
the correspondence further and notes that variables which have been assigned different types are necessarily dis-
tinct (I should probably add that this fact is not true in the presence of type abstraction). The static typing infor-
mation can thus provide information about aliasing at run-time.

A key example in the paper is that of the append function, which usually has type list ’a -> list ’a ->

list ’a. Baker then adds an extra type variable to the list type, which acts as an “instance identifier” for the
list. This “instance identifier” is not a memory location: all cells from the same list have the same identifier and
cells fromdistinct lists havedistinct identifiers. Type-checking thebodyof append again, with theusual unification
algorithm,we get a new type list (’l1, ’a) -> list (’l2, ’a) -> list (’l2, ’a). This giveswhatwewould
now call alias information: the return list cannot contain elements from the first argument. Since these are type
variables, in the case the two arguments belong to the same list, the type variables ’l1 and ’l2 get unified at
call-site.

15

2. A brief survey of advanced type systems

The main application in the eyes of Baker is memory collection performance: when returning from a func-
tion, all the intermediate values that live in instances distinct from the return value can be safely discarded; when
updating an array that is distinct from all others, it may be updated in place (this was also a concern of Wadler).

The paper is interesting in several regards. First, it introduces the idea that the type system can track aliasing;
also, it introduces the idea that some memory nodes may live in the same conceptual region of the heap (e.g. be
in the same list) and alias each other unbeknownst to the type-checker.

In 1994, Tofte andTalpin [TT94] push the idea further by incorporating the idea of regions in a dialect ofML.
They introduce two key mechanisms: the letregion ρ in e1 construct, which introduces a well-scoped lexical
region, and the e1 at ρ annotation, which instructs in which region a value should live. There two constructs are
inserted automatically by their inference procedure.

Function types are annotatedwith read andwrite effects (which they call get and put)over the various regions.
An effect system similar to FX allows to unify conflicting effects when unifying function types. The soundness
result depends on being able to track properly the effects performed by a function: indeed, a closuremay not only
perform effects over the regions of its arguments, but may also capture regions!

Their work addresses two concerns with Baker’s paper. First, they prove safety. Second, they deal with poly-
morphism by making sure that region variables correspond to Λ-abstractions which can be instantiated just like
in ML. In particular, they use polymorphic recursion to make sure that within a recursive function, recursive calls
can instantiate onto different regions, hence providing good results.

Indeed, their concern remains the same as Baker’s: provide efficient memory management by using region
annotations tofigureout that awhole set of objectswent out of scope, hencebecoming candidates for deallocation.
This approach has been leveraged by MLKit [BRTT93].

2.2 Close sources of inspiration

Alias types

The authors of “Alias Types” [SWM00] set themselves in the context of a low-level language, possibly a typed
assembly language. Things are quite different: memory locations (or registers) are mutated in place, so as to
reuse space. A single location will thus have several distinct types throughout its lifetime. Besides, compilation
generates code that uses patterns such as progressive initialization, where the fields of an object are initialized one
after another. The object hence goes through a variety of states (types) before it is ready.

Having type-changing updates mandates the use of linear types; otherwise, the system would be unsound.
This is at odds with another constraint that the authors have, namely that they need to alias objects: a pointer may
be copied into a register, thus creating another alias to the object originally pointed to.

The authors introduce a new type called ptr(ℓ), which is that of a pointer tomemory location ℓ. They represent
the mutable store through constraints of the form ℓ 7→ ⟨· · · ⟩, where 7→ stands for “points to” and ⟨· · · ⟩ stands
for a memory block. A store is made up of several constraints separated by⊕.

Here is a fragment of code that describes a memory block at ℓ1 of size two, whose two components point to
the same memory location ℓ2, where an integer is located.

ℓ1 7→ ⟨ptr(ℓ2), ptr(ℓ2)⟩ ⊕ ℓ2 7→ ⟨int⟩

In a fashion similar to Wadler, the authors provide two flavors of constraints: linear and nonlinear.
The authors also add two importantmechanisms: location polymorphism, in order to write generic functions

that can operate on any memory location, and store polymorphism, so as to make sure that a function can touch
a portion of the store and leave the rest untouched.

The key insight of the paper is that the ptr(ℓ) type is duplicable; that is, it conveys no ownership information.
The ownership information is stored in the ℓ 7→ · · · constraint. One is thus free to alias an object; the type system
merely records that there are pointers to this object, and keeps the ownership information in one central place.
This makes strong updates (type-changing updates) possible, since there only exists one copy of the “real type” of
an object.

In an extension of their original paper [WM00], the authors introduce extra type-theoretic mechanisms to
take into account recursive data structures such as trees and lists. They add tagged unions (using integer singleton
types), recursive types (using a μ combinator), existential packing, and more importantly, what they call encap-
sulation. Encapsulation allows one to package a pointer (the ptr(ℓ) type we saw earlier) along with a constraint

16

2.2. Close sources of inspiration

(of the form ℓ 7→ t), meaning that a value now embeds ownership of another fragment of the heap. They write
(ptr(ℓ) | {ℓ 7→ t}). These ingredients are enough to define the type of lists:

μlist. ⟨0̂⟩ ∪ ∃(ℓ : loc | {ℓ 7→ list}).⟨1̂, ptr(ℓ)⟩

Thedefinition above describes a type that is either the constant 0 (this would be theNil case in anML-like setting),
or a block tagged with the constant 1 (this would be Cons). The latter case is wrapped in an existential quantifier
that refers to a certain location ℓ along with a linear constraint for that same location. The linear constraint merely
says that the tail of a cons cell is another list.

What this means, in essence, is that once a run-time test is performed, the type-checker can discriminate the
union and, if we are in the Cons case, unpack the existential and obtain a linear constraint for a Cons cell whose tail
is itself a list.

Naturally, the devil’s in the details; I leave out of the picture complex aspects of this work, such as subtyping.
Nonetheless, these simple ingredients are remarkably powerful. The authors manage to express patterns such as
destination-passing style, or in-place tree traversal using link reversal.

Many of these ideas are to be found (although in a somewhat different form) inMezzo; it is not a coincidence
that two of the first few examples that we wrote were a destination-passing style List.map and an in-place tree
traversal. The description of the heap in terms of locations and points-to constraints is very similar to the “ex-
panded”, structural permission conjunctions we describe in §3.2: the ptr(ℓ) is analogous to our singleton types
and ℓ 7→ ... is reminiscent of ℓ@ The encoding of data types remains, however, slightly low-level and is closer
to what is modeled in the proof of soundness of Mezzo. The type-checking of Mezzo, however, remains slightly
higher-level and uses data types as a primitive construct (§8.3).

Alias Types had a somewhat lasting influence. Their novel mechanism for handling the ever-pervasive prob-
lemof aliasingwas re-used forTypedAssemblyLanguage [MWCG99], theflow-sensitive analysis of Cqual[AFKT03],
as well as Vault (§2.3).

L³: a Linear Language with Locations

The authors of L³ [AFM07] try to re-interpret the alias types language within the formalism of Linear Logic.
Interestingly, they note that a linear reference (in the style of Wadler) is simply the combination of a pointer

to a memory location along with a capacity for that location, thus tying Alias Types and Linear Types together.

lref τ ≡ ∃ℓ(ptr(ℓ) | {ℓ 7→ τ})

They build a core language where everything is linear and every well-typed program terminates, then extend
it with duplicable (also known as “nonlinear”, “unrestricted”, “frozen”, or “type-invariant”) references. Typically,
one wishes to freeze a linear reference into a non-linear one which no longer supports strong updates.

Rather than implement a (necessarily restrictive) swap operation for unrestricted references that ensures that
the type remains the same through the update, they offer a construct that thaws a frozen reference into a linear
one. In order tomake this sound, the user has to justify that no other thawed reference exists; they use a run-time,
linear token that is threaded through the entire program to keep track of which references have been thawed, along
with their original type. This permits a re-freeze operation to take place as well.

The authors do not commit to a specific implementation of this linear token; rather, they leave it up to the
actual implementation to choose a particular mechanism for proving at run-time that the value currently has no
other alias. Some mechanisms for doing actually already exist: the locks mechanism is one such example.

Threading a run-time token to ensure unique ownership using run-time tests is an idea that Mezzo reuses,
through the adoption/abandon mechanism §3.3.

Separation logic

I now leave the strand of work covered by Figure 2.1 and turn to separation logic, which is perhaps the biggest
source of inspiration for Mezzo. Indeed, I often sum up Mezzo as “separation logic turned into a type system”.

Separation logic is not a type system but a program logic, that is, it allows one to reason on programs. Essen-
tially, it is a remarkably convenient framework formanipulating symbolic heap predicates, thus performing symbolic
interpretation of (possibly concurrent) programs. Separation logic forms the basis for program verification tools
such as Ynot [CMM+09].

17

2. A brief survey of advanced type systems

The original paper by John Reynolds [Rey02] appeared in 2002. Since then, more than a hundred papers
have been written, all of which use a slightly different presentation of separation logic. Several common traits
emerge [Jen13].

Symbolic heap predicates are written using an assertion language. The language usually contains memory
blocks, points-to assertions, and features the separating ∗ connective. The ∗ connective is key: it denotes two
physically disjoint heap fragments. We see below why this is crucial.

Here is an example of an assertion, where tree(p) is a built-in predicate that describes a heap fragment that
forms a tree, whose root is p.

t 7→ ⟨l, r⟩ ∗ tree(l) ∗ tree(r)

The specification language describes how a statement transforms a symbolic heap into another. The specifica-
tion is typicallymade up ofHoare triples, whose pre- and post- condition are written using the assertion language.
Here are some key rules of separation logic (Figure 2.3). Mezzo possesses similar subsumption rules (Frame,
Transitive in §8.2).

SL-Frame
{P} c {Q}

{P ∗ R} c {Q ∗ R}

SL-Par
{P} c {Q} {P′} c′ {Q′}
{P ∗ P′} c || c′ {Q ∗ Q′}

SL-Consequence
P ⊩ P′ {P′} c {Q′} Q′ ⊩ Q

{P} c {Q}

Figure 2.3: The key rules of separation logic

The most important rule is perhaps SL-Frame. In an informal manner, if a statement c requires a heap pred-
icate P and turns it into Q, then it leaves the rest R of the heap untouched. Indeed, the ∗ connective bakes in the
fact that its two sides live in distinct fragments of the heap. One could sum this up as “everyone minds their own
business”.

Other important rules of separation logic include the consequence rule, which allows for a natural narrative
style of proof, where the current assertion isweakenedusing an entailment relation⊩ aswego through theprogram.
This is the core idea of Hoare logic, on which separation logic is based.

Separation logic is also remarkably well-suited for reasoning about concurrent programs. If c and c′ run in
parallel, SL-Par tells us that as long as they operate on physically disjoint heap fragments, they will not interfere.

These rules are quite general. Here is an example of an axiom for assignment. The way this rule is written is
somehow reminiscent of a weakest precondition calculus.

SL-Assign
{[E/x]Π} x := E {Π}

Reading backwards, the axiom state that in order to prove that the statement “x := E” gives the heap predicate
Π, then it suffices to show [E/x]Π, that is, Π where all occurrences of x have been replaced with E.

Let us illustrate these rules using a classic example, which is that of the dispose function. This function frees
a heap-allocated tree, and is used in the Smallfoot papers [BCO05b]).

void dispose(tree* p) {

if (p != NULL) {

dispose(p->left) || dispose(p->right);

free(p);

}

}

Two recursive calls are required, so as to free the left and right sub-trees, before freeing the node itself. The
recursive calls are performed in parallel.

Without separation logic, the pre- and post-conditions for dispose need to explicitly assert that the function
only frees elements reachable via p and leaves other parts of the heap untouched. That is, we need to state non-
interference properties about the function, to be able to reason in a modular manner.

18

2.2. Close sources of inspiration

With separation logic, the specification for this function admits a natural formulation.

{tree(p)} dispose(p) {empty}

Thanks to the frame rule, the fact that dispose only operates on the fragment of the heap covered by the tree(p)
predicate comes for free.

Here is how one would prove that the function matches its specification, using a combination of SL-Frame,
SL-Par and SL-Consequence. The Hoare triples are shown in math font, and denote the assertions that are
valid at each program point.

void dispose(tree* p) {

{tree(p)}
if (p != NULL) {

{p 7→ ⟨l; r⟩ ∗ tree(l) ∗ tree(r)}
dispose(p->left) || dispose(p->right);

{p 7→ ⟨l; r⟩}
free(p);

{emp}

}

}

The purpose of the present section is not to cover separation logic exhaustively; a book would be the right
format for that. Rather, let met try to highlight a few key points about separation logic that are reminiscent, or in
contrast with problems that need to be solved in Mezzo.

Spatial assertions and logical assertions Some authors find it desirable to split heap predicates into spatial
parts and logical parts [BCO05b, CDOY09]. Logical parts contain equality and disequality predicates. Spatial
parts contain points-to assertions (written x 7→) separated by the ∗ connective. The right-hand-side of points-to
assertions is made up of memory blocks.

Mezzo bundles everything together as permissions. While equations get a special treatment (via Equals-
ForEquals) in the subsumption relation as well as in the implementation, they are presented as regular permis-
sions of the form x@ =y using the singleton type mechanism.

Theentailment problem When checking a function definition, one starts with Πpre, the function pre-condition.
This is the assertion (also known as “heap predicate”) that holds when one enters the function body. One then
steps through the function definition, applying rules from the specification to update the current assertion, until
one reaches the end of the function body, obtaining a heap predicate Π. The function is annotated with a post-
condition Πpost.

One then needs to answer the question: does Π entail Πpost? This is usually written as Π ⊩ Πpost.
Here is an example of two entailment problems: the first assertion entails tree(t), but the second one does

not, for the tree(t) predicate denotes a tree whose two sub-trees are physically distinct.

t 7→ ⟨l; r⟩ ∗ tree(l) ∗ tree(r) ⊩ tree(t)
t 7→ ⟨l; r⟩ ∗ tree(l) ∗ l = r ̸⊩ t 7→ ⟨l; r⟩ ∗ tree(l) ∗ tree(r)

Solving the entailment problem depends very much on the specification language chosen, as well as the as-
sertion language that one manipulates. One can design systems where entailment is decidable [BCO04].

Entailment is also crucial when stepping through the program (SL-Consequence); one needs to transform
the current assertion into theoneneeded for thenext program instruction. This is done via the entailment relation.

In Mezzo, the entailment problem is called subtraction and is the topic of Chapter 11.

The frame inference problem The declarative SL-Frame rule from Figure 2.3 does not provide a way to com-
pute the actual fragment R that is left untouched. In other words, how does one separate a heap H into a P part
(the “smallest” one required to call a function) and the R part (the leftover)?

The specifics of frame inference will, again, depend on the particulars of the system. The Smallfoot sys-
tem [BCO05b], which I mentioned earlier, offers an incomplete frame inference procedure.

In Mezzo, the subtraction operation also performs frame inference.

19

2. A brief survey of advanced type systems

Built-in vs. user-defined predicates Many early works feature built-in predicates for the spatial part of asser-
tions. Typical spatial predicates include list(x), listseg(x), tree(x). This somehow restrictive state of things was
lifted later on [NDQC07] by allowing assertions to mention user-defined predicates.

Allowing user-defined predicates is not a trivial change: as the previous Alias Types examples showed (§2.2),
unfolding an inductive predicate amounts to unpacking an existential. This means that the entailment and frame
inference problems need to deal with quantifiers, something that was not covered in earlier works.

Permissions in object-oriented languages

Theobject-oriented community also tried tobuilduponexisting type systems toprovide stronger static guarantees
and rule out more bugs. In particular, a salient issue in an object-oriented setting is object protocols, also known
as “typestate” in the literature [SY86].

Objects go through different states during their lifetime. The typical example is that of a file descriptor that
goes from ready to closed. This is purely conceptual, though: the type system of, say, Java, will not enforce these
conventions, and the user must rely on documentation and manual code review to verify what are these implicit
conventions and whether they are enforced.

An early strand of work is Fahndrich and DeLine’s Vault [DF01] and Fugue [DF04] languages. The former
provides reasoning about typestate for a low-level language, while the latter tackles high-level, object oriented
languages. The main restriction, though, is that Fugue provides limited guarantees in the presence of aliasing.

Indeed, typestate and alias control are two closely relatedproblems. If onepiece of codemoves a file descriptor
from ready to closed, then me must make sure we are aware of all the aliases to the object. Failing to track an alias
means that somewhere, an outdated, inconsistent vision of the world (“the object is still ready”) exists, which can
lead to crashes.

Plural A first line of work that tries to talk about typestate in the presence of aliasing is Plural [BA07, BBA11].
The idea is to take a well-typed Java program, annotate it with extra state specifications, and run an external tool,
Plural, to check that the protocols are well-enforced.

At each program point, a set of permissions describe the kind of ownership I have; these permissions also de-
scribe the kind of ownership others have. Here, “I” and “others” should be understood as “the currently executing
piece of code” and “other pieces of code that may hold aliases tomy object”. There are as many as five (Figure 2.4)
possible permissions for an object, but only some variants can co-exist at the same time.

Access through other permissions Current permission has…
Read-write access Read-only access

None unique –
Read-only full immutable
Read-write share pure

Figure 2.4: The zoology of permissions in Plural

An example of permission is full(this), which indicates that amethod requires read-write access to the receiver,
and demands that other parts of the code only hold read-only aliases to the receiver. Permissions may be refined
with an in clause, which indicates ownership of the object in one particular state. A permission describing a file
descriptor that is ready and shared in a read-write fashion with others would thus be share(fd) in ready.

These permissions are user-facing permissions; internally, Plural uses more complex permissions.
Specification of the various states is done using state diagrams. This means that there is a hierarchy of states

that is formed by a tree. The children of a state are understood to be refinements of that state.
Method specifications are embedded in a decidable fragment of linear logic. A classic example is the iterator,

where the hasNextmethod either returns true, indicating that the iterator has more elements available, or returns
false, indicating that the iterator has come to an end. The method specification for hasNext is:

pure(this) ⊸ (result = true⊗ pure(this) in available)
⊕ (result = false⊗ pure(this) in end)

Permissions can be split when one desires to create aliases: an object is initially held as unique, but this permission
can be, for instance, split into a combination of a full and a pure permission. One naturally wishes to recombine

20

2.3. Other related works

these two permissions to obtain the stronger, original one. This is done using fractional permissions [Boy03].

pure(this, 1) ≡ full(this,
1
2
)⊗ pure(this,

1
2
)

Some operations, such as refining into amore precise state, do not demand full ownership of the object. Some
other operations, such as moving an object into a coarser state, will require a unique permission to ensure consis-
tency with other aliases.

Plural is a static analysis, as the permissions that aremanipulated exist purely at compile-time, not at run-time.
The Plural analysis does not have false negatives, that is, it will not flag correct programs for errors; it fails,

however, to catch all protocol violations, meaning that some incorrect programs will still be accepted by the tool.
Mezzo features amuch simpler permissionmodel, and does not include the sophistications of a language such

as Plural. Mezzo can express state change, albeit in a slightly different fashion. While in Plural the central concept
is objects and classes, in Mezzo, the central feature of the language would certainly be data types. In the tail-
recursive concatenation example (§3.2), cells change state and go from uninitialized Cells to well-formed Cons

blocks; this would be an example of state change in Mezzo.

Plaid Plaid [SNS+11,Ald10], in contrast toPlural, is a brandnew language. InPlaid, states are first-class objects
that can be composed, re-used, and that can inherit from one another. Concretely, the programmer, instead of
defining classes just like in Java, defines states. Similarly, instead of extending a parent class, the programmer
refines a parent state. This amounts to defining a state chart via the various inheritance relationships.

A consequence of this choice is that, unlike Plural, states have a run-time representation: states are object that
exist at run-time; one can determine the actual state of an object by performing a run-time test. A drawback is that
whenever one performs a state change, a run-time operation has to take place to actually reflect the state change
on the object that lives in memory.

2.3 Other related works

This final section presents some works that, even though they didn’t serve as direct sources of inspiration, share
the same aspirations or goals as Mezzo. There are too many to list them all; I present a (necessarily) incomplete
selection.

Ownership types

The object-oriented community has been aware for a long time that undesired aliasing can cause representation
exposure, failures to track invariants and prevent reasoning in a modular fashion.

Ownership Types ([CPN98, CÖSW13], as well as a long series of papers in-between these two) offer a key
idea, which is to structure the heap according to an ownership hierarchy.

An object owns a context, whichmay be understood, in the words of separation logic, as a heaplet. The object
may allocate other objects in that context. Only the owner or the inhabitants of the context may refer to objects
living in that context. This means that outside references are disallowed: the only way to refer to an object is to go
through the object hierarchy and follow a path that traverses all of the object’s owners.

Contexts appear as part of types. This means that, by looking at the types of two objects, if the contexts are
distinct, then the two objects live in separate parts of the heap, hence cannot be aliases.

There is an important point that the paper makes: possessing a reference to an object and owning it are two
separate concepts. This is something that also appears in Alias Types (the ptr(ℓ) type), as well as in Mezzo.

Cyclone

Cyclone [JMG+02, GMJ+02, SHM+06] is a type-safe dialect of C dedicated to low-level programming. The
goal of Cyclone is to have, just like Tofte and Talpin, predictable memory deallocation using regions. They note,
like so many others, that the last-in first-out discipline of regions induced by the lexical letregion construct is
too restrictive. This is particularly true of long-lived applications: imagine an application with an event loop,
for instance. If the region is scoped within the loop, variables cannot persist across iterations. If the region’s
scope encompasses the loop, variables are kept allocated until the end of execution, hence creating an unbounded
memory leak.

21

2. A brief survey of advanced type systems

Cyclone thus incorporates a remarkable variety of mechanisms to handle allocation and deallocation: a static
region mechanism, a conservative garbage collector, unique pointers, reference-counted pointers, dynamically-
sized regions, LIFO arenas…The authors mention at numerous times that formalizing the entire system is too
complex, and focus instead on restrictions which they sometimes dub “core Cyclone”.

The concept of static region is used widely: a stack frame is a static region, the heap is also another static
region. Using a type-and-effect system allows tracking which regions are still alive. The system naturally features
region polymorphism.

Cyclone, having unique pointers, also encounters the need to temporarily alias a uniquely-owned object. I
mentionedalready thatWadler bumped into the issue early on;Crary et al. in theCalculusofCapabilities [CWM99]
use subtyping. Here, the authors of Cyclone use a let alias construct that is similar in spirit to Wadler’s mech-
anism and relies on syntactic scope to guarantee that aliases do not escape. This mechanism is also implemented
using a locally-scoped region.

Rust

Rust [The14] is a new systems-oriented programming language designed by Mozilla. Rust’s stance is to incorpo-
rate high-level constructs from modern programming languages into a language that still allows the user to retain
control over low-level features, such as manual memory management.

Compared to Mezzo, Rust thus needs to expose much more information to the programmer: where does a
variable live (stack or heap), how the lifetime of a variable is managed, whether an object is boxed or not, whether
a closure lives on the stack or on the heap, etc. Exposing these concerns is necessary: for instance, objects, just
like in C++, have destructors.

The technical ingredients that Rust uses are: a discipline of unique pointers, which can be temporarily bor-
rowed, along with a mutability analysis that determines which operations are legal or not.

Rust also has a notion of ownership: unique ownership of data structures is recursive. Borrowing an object
grants non-unique ownership of it. Rust is equippedwith amechanismof traitswhich can act either as performing
a dynamic dispatch or a static dispatch.

At the time of this writing, it seems that Rust is leaning towards a stronger emphasis on ownership rather than
mutability.

An important difference is that Rust currently does not have a formalmodel, even though some attempts have
been made [Mat14].

Vault

Vault [DF01] is another attempt at bridging the gap between high-level reasoning and low-level software. The
idiom used in Vault is that of a type key: the type of each object mentions its key. The compiler keeps track at
compile-time of which keys are available; each key is a token that models a distinct resource. All keys are lin-
ear. Functions can demand that a key be present; functions may also consume keys; the pre-condition and post-
conditions are checked at compile-time. Keys may be in a particular state.

Having linear keys naturally allows the compiler to properly track ownership and state change via keys. It in-
curs the usual restrictions on aliasing, though. Vault thus uses a region abstraction: creating a new region allocates
a new key, and the types of objects within the regionmention the same key. Thus, whenever the key for the region
is available, one can use the objects within the region. Conversely, once the key is gone, one can safely deallocate
the entire region. The ownership of a key thus grants ownership of all objects within the region. The mechanism
remains purely static.

The authors also track local aliasing relationship using singleton types, just like in Mezzo. Interestingly, they
mention the issue of computing type agreement at join points, which is the topic of Chapter 12.

22

Part II

A taste of
Mezzo

3 AMezzo tutorial

3.1 Three small examples . 25

3.2 Lists . 31

3.3 Breaking out: arbitrary aliasing of mutable data structures . 41

4 Bits from the standard library

4.1 Nesting . 49

4.2 Adoption/abandon as a library . 54

4.3 One-shot functions . 56

4.4 Rich booleans . 56

4.5 Locks and conditions, POSIX-style . 59

4.6 Landin’s knot (recursion via the mutable store) . 63

4.7 Other interesting bits . 64

5 Writing programs inMezzo

5.1 Ownership and function signatures . 65

5.2 Higher-order effects and crafting signatures . 68

5.3 Reifying coercions . 70

5.4 Object-oriented programming . 72

This part is aboutMezzo, as a language: I wish to illustrate the language in various respects.
Thefirst chapter tries to give the reader a senseofwhat the language feels like. There aremany
examples that illustrate the way the language works; how programs are type-checked; the
kind of guarantees our novel type systemprovides. This chapter is completely informal, yet,
the user should feel fairly familiar withMezzo after reading it. Hopefully, the reader should
also appreciate the design effort that was spent on creating a user-facing language, rather
than just a core, low-level calculus.
The subsequent chapter takes a few pieces of code from the Mezzo standard library and
comments them, highlighting the strengths or limitations of the language. Some more ar-
cane features of the language are showcased, and a few algorithms are fleshed out.
The last chapter reflects on the art of writing Mezzo programs and tries to identify a few
common patterns, as well as guidelines for writing programs.

3. AMezzo tutorial

This chapter, just likeChapter 4 andChapter 5, uses the surface language, that is, the language that the programmer
manipulates. The surface language provides several syntactic and semantic facilities that make programming in
Mezzo easier. Hopefully, this chapter will feel natural and the reader, and the extent of these facilities will only
become apparent in Part III, where I explain all the implicit mechanisms and translate them away in a simpler,
more regular core calculus.

3.1 Three small examples

Let me begin with three small examples that should, hopefully, give the reader a good preview of Mezzo. These
examples are small, self-contained, and serve as a good basis for explaining our typing discipline. Later sections
feature more full-fledged examples.

Write-once references

A write-once reference is a memory cell that can be assigned at most once and cannot be read before it has been
initialized.

A client of themodule Figure 3.1 shows some client code that manipulates a write-once reference. The Mezzo
type system guarantees that the user must call set before using get, and can call set at most once.

1 open woref

2

3 val _ : (int, int) =

4 let r = new () in

5 set (r, 3);

6 (get r, get r)

Figure 3.1: Using a write-once reference.

At line 4, we create a write-once reference by calling woref::new. (Thanks to the declaration open woref, one
can refer to this function by the unqualified name new.) The local variable r denotes the address of this reference.
In the eyes of the type-checker, this gives rise to a permission, written r @ writable. This permission has a double
reading: it describes the layout of memory (i.e., “the variable r denotes the address of an uninitialized memory
cell”) and grants exclusive write access to this memory cell. That is, the type constructor writable denotes a
uniquely-owned writable reference, and the permission r @ writable is a unique token that one must possess
in order to write r. (We explain later on how the system, via a lookup of the definition of writable, knows that r
@ writable is exclusive.)

Permissions are tokens that exist at type-checking time only. Many permissions have the form x @ t, where
x is a program variable and t is a type. At a program point where such a permission is available, we say informally

25

3. A Mezzo tutorial

1 data mutable writable =

2 Writable { contents: () }

3

4 data frozen a =

5 Frozen { contents: (a | duplicable a) }

6

7 val new () : writable =

8 Writable { contents = () }

9

10 val set [a] (consumes r: writable, x: a | duplicable a)

11 : (| r @ frozen a) =

12 r.contents <- x;

13 tag of r <- Frozen

14

15 val get [a] (r: frozen a) : a =

16 r.contents

Figure 3.2: Implementation of write-once references

that “x has type t (now)”. Type-checking in Mezzo is flow-sensitive: at each program point, there is a current
permission, which represents our knowledge of the program state at this point, and our rights to alter this state.
The current permission is typically a conjunction of several permissions. The conjunction of two permissions p
and q is written p * q.

Permissions replace traditional type assumptions. A permission r @ writable superficially looks like a type
assumption r : writable. However, a type assumption would be valid everywhere in the scope of r, whereas a
permission should be thought of as a token: it can be passed from caller to callee, returned from callee to caller,
passed from one thread to another, etc. If one gives up this token (say, by assigning the reference), then, even
though r is still in scope, one can no longer write it.

At line 5, we exercise our right to call the set function, andwrite the value 3 to the reference r. In the eyes of the
type-checker, this call consumes the token r @ writable, and instead produces another permission, r @ frozen

int. This means that any further assignment is impossible: the set function requires r @ writable, which we
no longer have. Thus, the reference has been rendered immutable. This also means that the get function, which
requires the permission r @ frozen int, can now be called. Thus, the type system enforces the desired usage
protocol.

The permissions r @ writable and r @ frozen int are different in one important way. The former denotes a
uniquely-owned, writable heap fragment. It is affine: once it has been consumed by a call to set, it is gone forever.
The latter denotes an immutable heap fragment. It is safe to share it: this permission is duplicable. If one can
get ahold of such a permission, then one can keep it forever (i.e., as long as r is in scope) and pass copies of it to
other parts of the program, if desired. Such a permission behaves very much like a traditional type assumption r

: frozen int.
At line 6, we build a pair of the results of two calls to get. There is an implicit sequence: the dynamic semantics

of Mezzo prescribes left-to-right evaluation order. The second call is type-checked using whatever permissions
remain after the first call. Here, the duplicable permission r @ frozen int is implicitly copied, so as to justify the
two calls to get.

We now explain how this module is implemented. Its code appears in Figure 3.2.

To be or not to be duplicable The type writable (line 1) describes a mutable heap-allocated block. Such a
block contains a tag field (which must contain the tag Writable, as no other data constructors are defined for this
type) and a regular field, called contents, which has unit type. The function new (line 7) allocates a freshmemory
block of type writable and initializes its contents field with the unit value. A call to this function, such as let r

= woref::new() in ..., produces a new permission r @ writable.
The definition of writable contains the keyword mutable. This causes the type-checker to regard the type

writable, and every permission of the form r @ writable, as affine (i.e., non-duplicable). This ensures that r @

26

3.1. Three small examples

writable represents exclusive access to thememoryblock at address x. If one attempts toduplicate this permission
(for instance, by writing down the static assertion assert (r @ writable * r @ writable), or by attempting to
call set (r, ...) twice), the type-checker rejects the program.

The parameterized data type frozen a (line 4) describes an immutable heap-allocated block. Such a block
contains a tag field (which must contain the tag Frozen) and a regular field, also called contents¹, which has type
(a | duplicable a).

Before going further, we must say a little more about the syntax of types. The type (a | duplicable a) is
of the form t | p: indeed, a is a type, while duplicable a is a permission². This means that the value stored at
runtime in the contents field has type a, and is logically accompanied by a proof that the type a is duplicable.

More generally, a type of the form t | p can be thought of as a pair; yet, because permissions do not exist
at runtime, a value of type t | p and a value of type t have the same runtime representation. We write (| p)

for (() | p), where () is the unit type. Another syntactic convention is that, by default (that is, unless the con-

sumes keywords is used), a permission that appears in the domain of a function type is implicitly repeated in the
codomain.

Why do we impose the constraint duplicable a as part of the definition of the type frozen a? The reason
is, a write-once reference is typically intended to be shared after it has been initialized. (If one did not wish to
share it, then one could use a standard read/write, uniquely-owned reference.) Thus, its content is meant to be
accessed bymultiple readers. This is permitted by the type system only if the type a is duplicable. Technically, the
constraint duplicable a could be imposed either when the write-once reference is initialized, or when it is read.
We choose the former approach because it is simpler to explain. The latter would work just as well, and would
offer a little extra flexibility.

The definition of frozen does not contain the keyword mutable, so a block of type frozen a is immutable.
Thus, it is safe to share read access to such a block. Furthermore, because we have imposed the constraint du-
plicable a, it is also safe to share the data structure of type a whose address is stored in the contents field. In
other words, by inspection of the definition, the type-checker recognizes that the type frozen a is duplicable.
This means that a write-once reference can be shared after it has been initialized.

Changing states: strong updates The use of the consumes keyword in the type of set (line 10) means that
the caller of set must give up the permission r @ writable. In exchange, the caller receives a new permission
for r, namely r @ frozen a (line 11). One may say informally that the type of r changes from “uninitialized” to
“initialized and frozen”.

The code of set is in two lines. First, the value x is written to the field r.contents (line 12). After this update,
the memory block is described by the permission r @ Writable { contents: a }.

Then, the tag of r is changed from Writable to Frozen: this is a tag update (line 13). This particular tag update
instruction is ghost code: it has no runtime effect, because both Writable and Frozen are represented at runtime
as the tag 0. This pseudo-instruction is just a way of telling the type-checker that our view of the memory block r

changes. After the tag update instruction, this block is described by the permission r @ Frozen { contents: a

}.
This permission can be combined with the permission duplicable a (which exists at this point, because set

requires this permission from its caller) so as to yield r @ Frozen { contents: (a | duplicable a) }. This is
the right-hand side of the definition of the type frozen a. By folding it, one obtains r @ frozen a. Thus, the
permissions available at the end of the function setmatch what has been advertised in the header (line 11).

In general, the tag update instruction allows changing the type of a memory block to a completely unrelated
type, with two restrictions: (i) the block must initially be mutable; and (ii) the old and new types must have the
same number of fields. This instruction is compiled down to either a single write to the tag field, or nothing at all,
as is the case above.

An interface for woref Mezzo currently offers a simple notion of module, or unit. Each module has an im-
plementation file (whose extension is .mz) and an interface file (whose extension is .mzi). This system supports

¹Contrary to OCaml, Mezzo allows two user-defined types to have a field by the same name.
²The user is encouraged to think of duplicable a as a regular permission; the syntax is crafted so that no difference exists between

t | p and t | duplicable a. Both the formalization and the implementation, however, distinguish the two concepts. Part III clarifies
this.

27

3. A Mezzo tutorial

1 abstract writable

2 abstract frozen a

3 fact duplicable (frozen a)

4 val new: () -> writable

5 val set: [a] (consumes r: writable, x: a | duplicable a)

6 -> (| r @ frozen a)

7 val get: [a] frozen a -> a

Figure 3.3: Interface of write-once references

1 val spawn: [p: perm] (

2 f: (| consumes p) -> ()

3 | consumes p

4) -> ()

Figure 3.4: Signature of the threadmodule

type abstraction as well as separate type-checking and compilation. It is inspired byOCaml and by its predecessor
Caml-Light.

The interface of the module woref is shown in Figure 3.3³.
The type writable is made abstract (line 1) so as to ensure that set is the only action that can be performed

with an uninitialized reference. If the concrete definition of writable was exposed, it would be possible to read
and write such a reference directly, without going through the functions offered by the module woref.

The type frozen is also made abstract (line 2). One could expose its definition without endangering the
intended usage protocol. Nevertheless, it is good practice to hide the details of its implementation; this may
facilitate future evolutions.

The fact that frozen a is a duplicable type is published (line 3). In the absence of this declaration, frozen
a would by default be regarded affine, so that sharing access to an initialized write-once reference would not be
permitted. This fact declaration is implicitly universally quantified in the type variable a. One can think of it as
a universally quantified permission, [a] duplicable (frozen a), that is declared to exist at the top level. This
permission is itself duplicable, hence exists everywhere and forever.

Indeed, lacking any specific annotation, abstract types are understood to be affine. The fact mechanism is
similar to variance inML signatures: type parameters are by default considered invariant, which is the less precise
information we can have (type ’a t). The user may provide variance annotations to refine the variance informa-
tion (type ’a map+). (Both facts and variance annotations form a lattice – this is developed in §8.6).

The remaining lines in Figure 3.3 declare the types of the functions new, get, and set, without exposing their
implementation. In the type of set, the first argument r must be named (line 5), because we wish to refer to it
in the result type (line 6). In a function header or in a function type, the name introduction form r: t binds the
variable r and at the same time requests the permission r @ t. In contrast, in the permission r @ t, the variable r
occurs free. The second argument of set, x, need not be named; we name it anyway (line 5), for the sake of
symmetry.

A race

We now consider the tiny program in Figure 3.5. This code exhibits a data race, hence is incorrect, and is rejected
by the type system. Indeed, the function f increments the global reference r. The main program spawns two
threads that call f. There is a data race: both threads may attempt to modify r at the same time. Let us explain
how the type-checker determines that this program must be rejected.

³ The fact that we require the elements stored in write-once references to be duplicable makes crafting a signature for the module
easier. Lacking the duplicable hypothesis, writing a proper signature for the module would require quite some expertise. The issue is
discussed at length in §5.1.

28

3.1. Three small examples

1 open thread

2

3 val r = newref 0

4 val f (| r @ ref int) : () =

5 r := !r + 1

6 val () =

7 spawn f; spawn f

Figure 3.5: Ill-typed code.

The signature of spawn is shown in Figure 3.4. The function consumes a permission p, which it then passes to
a function that takes no argument, returns no value, and requires p to execute.

The racy program is shown in Figure 3.5. At line 3, we allocate a (classic) reference r, thus obtaining a new
permission r @ ref int. A write-once reference would not suffice: we want to write several times into the refer-
ence.

The function f at line 4 takes no argument and returns no result. Its type is not just () -> (), though. Be-
cause f needs access to r, it must explicitly request the permission r @ ref int and return it. (The fact that this
permission is available at the definition site of f is not good enough: a closure cannot capture a non-duplicable
permission. ⁴) This is declared by the type annotation. Thus, at line 6, in conjunction with r @ ref int, we have
a new permission, f @ (| r @ ref int) -> (). This means that f is a function of no argument and no result (at
runtime), which (at type-checking time) requires and returns the permission r @ ref int.

By our syntactic conventions for function types, f @ (| r @ ref int) -> () means that f requires and re-
turns the permission r @ ref int. When one wishes to indicate that a function requires some permission but
does not return it, one must precede that permission with the keyword consumes.

This is the first time this situation arises: previously, permissions were either always consumed, or duplicable,
such as in the set function.

On line 7, there is a sequencing construct. The second call to spawn is type-checked using the permissions that
are left over after the first spawn. A call spawn f requires two permissions: a permission to invoke the function f,
and r @ ref int, which f itself requires. It does not return these permissions: they are transferred to the spawned
thread. Thus, in line 7, between the two spawns, we no longer have a permission for r. (We still have f @ (| r @

ref int) -> (), as it is duplicable.) Therefore, the second spawn is ill-typed. The racy program of Figure 3.5 is
rejected.

This behavior is to be constrasted with that of the earlier example. In Figure 3.1, the permission r @ frozen

int, which get requires, is duplicable. We can therefore obtain two copies of it and justify two successive calls to
get.

A fix for the race

In order to fix the racy program, one must introduce enough synchronization so as to eliminate the race. A com-
mon way of doing so is to introduce a lock and place all accesses to r within critical sections. In Mezzo, this can
be done, and causes the type-checker to recognize that the code is now data-race free.

Figure 3.6 shows a corrected version of Figure 3.5, where a lock has been introduced to fix the program. In
fact, this common pattern can be implemented as a polymorphic, higher-order function, hide (Figure 3.7), which
we explain below.

In Figure 3.7, the polymorphic, higher-order function hide takes a function f of type (consumes a | s) ->

(b | s), which means that f needs access to a piece of state represented by the permission s. hide requires s, and
consumes it. It returns a function of type (consumes a) -> b, which does not require s, hence can be invoked by
multiple threads concurrently. The type variables a and b have kind type. The square brackets denote universal
quantification.

⁴The fact thatMezzo only offers duplicable closuresmay seem surprising. However, affine closures can be defined as a library (§4.3.
Moreover, this keeps the system simple and saves the need for introducing various kinds of arrows depending onwhether the underlying
closure is duplicable or not.

29

3. A Mezzo tutorial

1 open thread

2

3 val r = newref 0

4 val l: lock::lock (r @ ref int) = lock::new ()

5 val f () : () =

6 lock::acquire l;

7 r := !r + 1;

8 lock::release l

9 val () =

10 spawn f; spawn f

Figure 3.6: Fixing the racy program, using a lock

1 open lock

2

3 val hide [a, b, s : perm] (

4 f : (consumes a | s) -> b |

5 consumes s

6) : (consumes a) -> b =

7 let l : lock s = new () in

8 fun (consumes x : a) : b =

9 acquire l;

10 let y = f x in

11 release l;

12 y

Figure 3.7: Hiding internal state via a lock, generic version

Locks are discussed in thorough detail in §4.5 and Figure 4.8. Let us, for the time being, explain this code
snippet succintly.

In Figure 3.7, f is a parameter of hide. It has a visible side effect: it requires and returns a permission s. When
hide is invoked, it creates a new lock l, whose role is to govern access to s. At the beginning of line 7, we have
two permissions, namely s and f @ (consumes a | s) -> b. At the end of line 7, after the call to lock::new, we
have given up s, which has been consumed by the call, and we have obtained l @ lock s. The lock is created in
the “released” state, and the permission s can now be thought of as owned by the lock.

At line 8, we construct an anonymous function. This function does not request any permission for f or l from
its caller: according to its header, the only permission that it requires is x @ a. Nevertheless, the permissions f
@ (consumes a | s) -> (b | s) and l @ lock s are available in the body of this anonymous function, because
they are duplicable, and a closure is allowed to capture a duplicable permission.

The fact that l @ lock s is duplicable is a key point. Quite obviously, this enablesmultiple threads to compete
for the lock. More subtly, this allows the lock to become hidden in a closure, as illustrated by this example. Let us
emphasize that s itself is typically not duplicable (if it were, we would not need a lock in the first place).

The anonymous function at line 8 does not require or return s. Yet, it needs s in order to invoke f. It obtains s
by acquiring the lock, and gives it up by releasing the lock. Thus, s is available only to a thread that has entered
the critical section. The side effect is now hidden, in the sense that the anonymous function has type (consumes

a) -> b, which does not mention s.

It is easy to correct the code in Figure 3.5 by inserting the redefinition val f = hide f before line 6. This call
consumes r @ ref int and produces f @ () -> (), so the two spawn instructions are now type-correct. Indeed,
the modified code is race-free.

30

3.2. Lists

3.2 Lists

The example of write-once references has allowed us to discuss a number of concepts, including affine versus
duplicable permissions, mutable versus immutable memory blocks, and strong updates. References are, however,
trivial data structures, in the sense that their exact shape is statically known. We now turn to lists. Lists are data
structures of statically unknown length, which means that many functions on lists must be recursive. Lists are
representative of the more general case of tree-structured data.

The algebraic data type of lists, list a, is defined in a standard way (Figure 3.8). This definition does not use
the keyword mutable. These are standard immutable lists, that is, lists with an immutable spine. The list elements
may be mutable or immutable, depending on how the type parameter a is instantiated.

Concatenation

Our first example of an operation on lists is concatenation. There are several ways of implementing list concatena-
tion in Mezzo. We begin with the function append, also shown in Figure 3.8, which is the most natural definition.

The type of append (line 5) states that this function takes two arguments xs and ys, together with the per-
missions xs @ list a and ys @ list a, and produces a result, say zs, together with the permission zs @ list a.
The consumes keyword indicates that the permissions xs @ list a and ys @ list a are not returned: the caller
must give them up. Before discussing the implications of this fact, let us first explain how append is type-checked.

At the beginning of line 6, the permission xs @ list a guarantees that xs is the address of a list, i.e., amemory
block whose tag field contains either Nil or Cons. This justifies the match construct: it is safe to read xs’s tag and
to perform case analysis.

Upon entry in the first branch, at the beginning of line 8, the permission xs @ list a has been replaced with
xs @ Nil. We refer to the latter as a structural permission. It is more precise than the former; it tells us not only
that xs is a list, but also that its tag must be Nil. This knowledge, it turns out, is not needed here: xs @ Nil is not
exploited when type-checking this branch. On line 8, we return the value ys. The permission ys @ list a is used
to justify that this result has type list a, as advertised in the function header. This consumes ys @ list a, which
is an affine permission.

Upon entry in the second branch, at the beginning of line 10, our knowledge about xs also increases. The per-
mission xs @ list a is replaced with xs @ Cons { head: a; tail: list a }. Like xs @ Nil, this is a structural
permission. It is obtained by looking up the definition of the data type list a and specializing it for the tag Cons.

Thepattern Cons { head; tail } on line 9 involves a pun: it is syntactic sugar for Cons { head = head; tail

= tail }, which binds the variables head and tail to the contents of the fields xs.head and xs.tail, respectively.
Thus, we now have two names, head and tail, to refer to the values stored in these fields. This allows the type-
checker to expand the structural permission above into a conjunction of three atomic permissions:

xs @ Cons { head: =head; tail: =tail } *

head @ a *

tail @ list a

The first conjunct describes just the memory block at address xs. It indicates that this block has tag Cons, that
its head field contains the value head, and that its tail field contains the value tail. The types =head and =tail

are singleton types [SWM00]: each of them is inhabited by just one value. This first conjunct can also be written
xs @ Cons { head = head; tail = tail }. In the following, this permission is not used, so we do not repeat it,
even though it remains available until the end.

The second conjunct describes just the first element of the list, that is, the value head. It guarantees that this
value has type a, so to speak, or more precisely, that we have permission to use it at type a. The last conjunct
describes just the value tail, and means that we have permission to use this value as a list of elements of type a.

In order to type-check the code on line 10, the type-checker automatically expands it into the following form,
where every intermediate result is named:

110 let ws = append (tail, ys) in

111 let zs = Cons { head = head; tail = ws } in

112 zs

31

3. A Mezzo tutorial

1 data list a =

2 | Nil

3 | Cons { head: a; tail: list a }

4

5 val rec append [a] (consumes (xs: list a, ys: list a)) : list a =

6 match xs with

7 | Nil ->

8 ys

9 | Cons { head; tail } ->

10 Cons { head; tail = append (tail, ys) }

11 end

Figure 3.8: Definition of lists and list concatenation

1 data mutable cell a =

2 Dummy | Cell { head: a; tail: () }

3

4 val rec appendAux [a] (consumes (

5 dst: Cell { head: a; tail: () },

6 xs: list a,

7 ys: list a

8)) : (| dst @ list a) =

9 match xs with

10 | Nil ->

11 dst.tail <- ys;

12 tag of dst <- Cons

13 | Cons ->

14 let dst’ = Cell { head = xs.head; tail = () } in

15 dst.tail <- dst’;

16 tag of dst <- Cons;

17 appendAux (dst’, xs.tail, ys)

18 end

19

20 val append [a] (consumes (xs: list a, ys: list a)) : list a =

21 match xs with

22 | Nil ->

23 ys

24 | Cons ->

25 let dst = Cell { head = xs.head; tail = () } in

26 appendAux (dst, xs.tail, ys);

27 dst

28 end

Figure 3.9: List concatenation in tail-recursive style

32

3.2. Lists

Thecall append (tail, ys)on line 110 requires and consumes the permissions tail @ list a and ys @ list

a. It produces thepermission ws @ list a. Thus, after this call, at thebeginningof line 111, the current permission
is:

head @ a *

ws @ list a

Thepermission head @ a, whichwasnot neededby the call append (tail, ys), has been implicitly preserved.
In the terminology of separation logic, it has been “framed out” during the call.

The memory allocation expression Cons { head = head; tail = ws } on line 111 requires no permission at
all, and produces a structural permission that describes the newly-allocated block in an exact manner. Thus, after
this allocation, at the beginning of line 112, the current permission is:

head @ a *

ws @ list a *

zs @ Cons { head = head; tail = ws }

At this point, since append is supposed to return a list, the type-checker must verify that zs is a valid list. It
does this in two steps. First, the three permissions above can be conflated into one composite permission:

zs @ Cons { head: a; tail: list a }

This step involves a loss of information, as the type-checker forgets that zs.head is head and that zs.tail is
ws. Next, the type-checker recognizes the definition of the data type list, and folds it:

zs @ list a

This step also involves a loss of information, as the type-checker forgets that zs is a Cons cell. Nevertheless, we
obtain the desired result: zs is a valid list. So, append is well-typed.

When is a list duplicable? It is natural to ask: what is the status of the permission xs @ list t, where t is a
type? Is it duplicable or affine?

Since the list spine is immutable, it is certainly safe to share (read) access to the spine. What about the list
elements, though? If the type t is duplicable, then it is safe to share access to them, which means that it is safe to
share the list as a whole. Conversely, if the type t is not duplicable, then list tmust not be duplicable either. In
short, the fact that describes lists is:

fact duplicable a => duplicable (list a)

This fact is inferred by the type-checker by inspection of the definition of the type list. If one wished to
export list as an abstract data type, this fact could be explicitly written down by the programmer in the interface
of the listmodule.

By exploiting this fact, the type-checker can determine, for instance, that list int is duplicable, because the
primitive type int of machine integers is duplicable; and that list (ref int) is not duplicable, because the type
ref t is affine, regardless of its parameter t.

A type variable a is regarded as affine, unless the permission duplicable a happens to be available at this
program point. In the definition of append (Figure 3.8), no assumption is made about a, so the types a and list

a are considered affine.

To consume, or not to consume Why must append consume the permissions xs @ list a and ys @ list a?
Could it, for instance, not consume the latter?

In order to answer this question, let us attempt to change the type of append to [a] (consumes xs: list a,

ys: list a) -> list a, where the consumes keyword bears on xs only. Recall that, by convention, the absence
of the consumes keyword means that a permission is requested and returned. In other words, the above type is in
fact syntactic sugar for the following, more verbose type:

33

3. A Mezzo tutorial

[a] (consumes xs: list a, consumes ys: list a)

-> (list a | ys @ list a)

It is not difficult to understand why append does not have this type. At line 8, where ys is returned, one would
need two copies of the permission ys @ list a: one copy to justify that the result of append has type list a, and
one copy to justify that the argument ys still has type list a after the call. Because the type list a is affine, the
type-checker rejects the definition of append when annotated in this way.

A similar (if slightly more complicated) analysis shows that the consumes annotation on xs is also required.
These resultsmake intuitive sense. The list append (xs, ys) shares its elements with the lists xs and ys. When

theuserwrites let zs = append (xs, ys) in ..., they cannot expect to use xs, ys and zs as if theywere listswith
disjoint sets of elements. If the permission xs @ list (ref int) * ys @ list (ref int) exists before the call,
then, after the call, this permission is gone, and zs @ list (ref int) is available instead. The integer references
are now accessible through zs, but are no longer accessible through xs or ys.

The reader may be worried that this discipline is overly restrictive when the user wishes to concatenate lists of
duplicable elements. What if, for instance, the permission prior to the call is xs @ list int * ys @ list int?
There is no danger in sharing an integer value: the type int is duplicable. It would be a shame to lose the permis-
sions xs @ list int and ys @ list int. Fortunately, these permissions are duplicable. So, even though append

requests them and does not return them, the caller is allowed to copy each of them, pass one copy to append, and
keep the other copy for itself. The type-checker performs this operation implicitly and automatically. As a result,
after the call, the current permission is xs @ list int * ys @ list int * zs @ list int: all three lists can be
used at will.

Technically, this phenomenon may be summed up as follows. In a context where the type t is known to be
duplicable, the function types (consumes t) -> u and t -> u are equivalent, that is, subtypes of one another. It
would be premature to prove this claim at this point; let us simply say that one direction is obvious, while the
other direction follows from the frame rule and the duplication rule.

As a corollary, the universal type [a] (consumes (list a, list a)) -> list a, which is the type of append
in Figure 3.8, is strictly more general than the type [a] (list a, list a | duplicable a) -> list a, where
the consumes keyword has been removed, but the type a of the list elements is required to be duplicable. In short,
this explains why append effectively does not consume its arguments when they have duplicable type.

List concatenation in tail-recursive style

The append function that we have discussed so far is a direct translation into Mezzo of the standard definition of
list concatenation in ML. It has one major drawback: it is not tail-recursive, which means that it needs a linear
amount of space on the stack, and may well run out of space if the operating system places a low limit on the size
of the stack.

One canwork around this problemby performing concatenation in two passes: that is, inOCaml, by compos-
ing List.rev and List.rev_append. Performing concatenation in one pass and in constant stack space requires
breaking the ML type discipline. The authors of the OCaml library “Batteries included” [Bat14] have chosen to
do so: they implement concatenation (and other operations on lists) by using an unsafe type cast.

We now show how to write and type-check a tail-recursive version of append in Mezzo. The code appears in
Figure 3.9. It is written in destination-passing style [Lar89], and has constant space overhead. Roughly speaking,
the list xs is traversed and copied on the fly. When the end of xs is reached, the last cell of the copy is made to
point to ys. We emphasize that, even thoughmutation is used internally, the goal is to concatenate two immutable
lists so as to obtain an immutable list.

Why is this code not well-typed inML?There are two (related) reasons. One reason is that the code allocates
a fresh list cell and initializes its head field, but does not immediately initialize its tail field. Instead, it makes a
recursive call and delegates the task of initializing the tail field to the callee. Thus, the type systemmust allow the
gradual initialization of an immutable data structure. The other reason is that, while concatenation is in progress,
the partly constructed data structure is not yet a list: it is a list segment. Thus, the type system may have to offer
support for reasoning about list segments.

A detailed look at the code The append function (line 20) is where concatenation begins. If xs is empty, then
the concatenation of xs and ys is ys (line 23). Otherwise (line 25), append allocates an unfinished, mutable cell dst.
This cell contains the first element of the final list, namely xs.head. It is not a valid list cell: its tail field contains

34

3.2. Lists

the unit value (). It is now up to appendAux to finish the work by constructing the concatenation of xs.tail and
ys and by writing the address of that list into dst.tail. Once appendAux returns, dst has become a well-formed list
(this is indicated by the postcondition dst @ list a on line 8) and is returned by append.

The function appendAux expects an unfinished, mutable cell dst and two lists xs and ys. Its purpose is to write
the concatenation of xs and ys into dst.tail, at which point dst can be considered a well-formed list.

If xs is Nil (line 10), the address ys is written to the field dst.tail (line 11). Then, dst, a mutable block
whose tag is Cell, is “frozen” by a tag update instruction (line 12) and becomes an immutable block, whose tag is
Cons. As in §3.1, this instruction has no runtime effect, because these tags have the same runtime representation.

If xs is a Cons cell (line 13), we allocate a new destination cell dst’ (line 14), let dst.tail point to it (line 15),
freeze dst (line 16), and repeat the process via a tail-recursive call (line 17).

Look Ma, no segments Operations on (mutable or immutable) lists with constant space overhead are tradi-
tionally implemented in an iterative manner, using a while loop. For instance, Berdine et al.’s formulation of
mutable list melding [BCO05a], which is proved correct in separation logic, has a complex loop invariant, involv-
ing two list segments, and requires an inductive proof that the concatenation of two list segments is a list segment.
In contrast, in our tail-recursive approach, the “loop invariant” is the type of the recursive function appendAux

(Figure 3.9). This type is quite natural and does not involve list segments.
How do we get away without list segments and without inductive reasoning? The trick is that, even though

appendAux is tail-recursive, which means that no code is executed after the call by appendAux to itself, a reasoning
step still takes place after the call.

Let us examine lines 14–17 in detail. Upon entering the Cons branch, at the start of line 14, the permission for
xs is xs @ Cons { head: a; tail: list a }. As in the earlier version of append (Figure 3.8), the type-checker
automatically expands it into a conjunction. Here, this requires introducing fresh internal names for the head and
tailfields, because the programmer did not provide explicit names for these fields as part of the pattern on line 13.
For clarity, we use the names head and tail. Thus, at the beginning of line 14, the current permission is:

dst @ Cell { head: a; tail: () } *

xs @ Cons { head = head; tail = tail } *

head @ a *

tail @ list a *

ys @ list a

On line 14, we read xs.head. According to the second permission above, this read is permitted, and produces
a value whose type is the singleton type =head. In other words, it must produce the value head. Then, we allocate
a new memory block, dst’. This yields one new permission, which comes in addition to those above:

dst’ @ Cell { head = head; tail: () }

Although this does not play a key role here, it is worth noting that these permissions imply that the fields
xs.head and dst’.head contain the same value, namely head. Besides, we have one (affine) permission for this
value, head @ a. So, the type-checker “knows” that xs.head and dst’.head are interchangeable, and that either
of them (but not both separately) can be used as a value of type a. Thanks to this precise knowledge, we do not
need a “borrowing” convention [NBAB12] so as to decide which of xs.head or dst’.head has type a. The idea
of recording must-alias information (i.e., equations) via structural permissions and singleton types is taken from
Alias Types [SWM00]. Separation logic [Rey02] offers analogous expressiveness via points-to assertions and
ordinary variables.

The assignment of line 15 and the tag update of line 16 are reflected by updating the structural permission that
describes dst. Thus, at the beginning of line 17, just before the recursive call, the current permission is:

dst @ Cons { head: a; tail = dst’ } *

xs @ Cons { head = head; tail = tail } *

head @ a *

tail @ list a *

ys @ list a *

dst’ @ Cell { head = head; tail: () }

35

3. A Mezzo tutorial

1 alias stack a =

2 ref (list a)

3

4 val new [a] (consumes xs: list a) : stack a =

5 newref xs

6

7 val push [a] (consumes xs: list a, s: stack a) : () =

8 s := append (xs, !s)

9

10 val rec work [a, p : perm] (

11 s: stack a,

12 f: (consumes a | s @ stack a * p) -> ()

13 | p) : () =

14 match !s with

15 | Cons { head; tail } ->

16 s := tail;

17 f head;

18 work (s, f)

19 | Nil ->

20 ()

21 end

Figure 3.10: A minimal implementation of stacks, with a higher-order iteration function

The call consumes the last four permissions and produces a new permission for dst’. Immediately, after the
call, the current permission is thus:

dst @ Cons { head: a; tail = dst’ } *

xs @ Cons { head = head; tail = tail } *

dst’ @ list a

We have reached the end of the code. However, the type-checker still has to verify that the postcondition
of appendAux is satisfied. By combining the first and last permissions above, it obtains dst @ Cons { head: a;

tail: list a }. Then, it folds this permission into dst @ list a, thus proving that the postcondition is indeed
satisfied: dst is now a valid list.

The fact that the structural permission dst @ Cons { ... } was framed out during the recursive call, as well
as the folding steps that take place after the call, are the key technical mechanisms that obviate the need for list
segments and inductive reasoning. In short, the code is tail-recursive, but the manner in which one reasons about
it is recursive.

Minamide [Min98] proposes a notion of “data structurewith a hole”, or in otherwords, a segment, and applies
it to the problem of concatenating immutable lists. Walker andMorrisett [WM00] offer a tail-recursive version of
mutable list concatenation in a low-level typed intermediate language, as opposed to a surface language. Theman-
ner in which they avoid reasoning about list segments is analogous to ours. There, because the code is formulated
in continuation-passing style, the reasoning step that takes place “after the recursive call” amounts to composing
the current continuation with a coercion. Maeda et al. [MSY11] study a slightly different approach, also in the
setting of a typed intermediate language, where separating implication offers a way of defining list segments.

Our approach could be adapted to an iterative setting by adopting a new proof rule for while loops. This is
noted independently by Charguéraud [Cha10, §3.3.2] and by Tuerk [Tue10].

A higher-order function

Webriefly present aminimal implementation of stacks on topof linked lists. This allows us to showan example
of a higher-order function, which is later re-used in the example of graphs and depth-first search (§3.3).

36

3.2. Lists

The implementation appears in Figure 3.10. A stack is defined as a mutable reference to a list of elements.
The function new creates a new stack; the function push inserts a list of elements into an existing stack. The latter
relies on the list concatenation function (§3.2). The higher-order function work abstracts a typical pattern of use
of a stack as a work list: as long as the stack is non-empty, extract one element out of it, process this element (pos-
sibly causing new elements to be pushed onto the stack), and repeat. This is a loop, expressed as a tail-recursive
function. The parameter s is the stack; the parameter f is a user-provided function that is in charge of processing
one element. This function has access to the permission s @ stack a, which means that it is allowed to update
the stack. The code is polymorphic in the type a of the elements. It is also polymorphic in a permission p that is
threaded through the whole computation: if f requires and preserves p, then work also requires and preserves p.
One can think of the conjunction s @ stack a * p as the loop invariant. The pattern of abstracting over a per-
mission p is typical of higher-order functions.

Borrowing elements from containers

In Mezzo, a container naturally “owns” its elements, if they have affine type. A list is a typical example of this
phenomenon. Indeed, in order to construct a permission of the form xs @ list t, onemust provide a permission
x @ t for every element x of the list xs.

If the type t is affine, then onemust give up the permission x @ twhen one inserts x into the list. Conversely,
when one extracts an element x out of the list, one recovers the permission x @ t. Other container data structures,
such as trees and hash tables, work in the same way.

If the type t is duplicable, then the permission x @ t does not have an ownership reading. One can duplicate
this permission, give away one copy to the container when x is inserted into it, and keep one copy so that x can
still be used independently of the container.

Anownership problem The fact that a container “owns” its elements seems fairly natural as long as one is solely
interested in inserting and extracting elements. Yet, a difficulty arises if one wishes to borrow an element, that is,
to obtain access to it and examine it, without taking it out of the container.

We illustrate this problemwith the function find, which scans a list xs and returns the first element x (if there
is one) that satisfies a user-provided predicate pred. Transliterating the type of this function from ML to Mezzo,
one might hope that this function admits the following type:

val find: [a] (xs: list a, pred: a -> bool) -> option a

However, in Mezzo, find cannot have this type. There is an ownership problem: if a suitable element x is
found and returned, then this element becomes reachable in twoways, namely through the list xs and through the
value returned by find. Thus, somewhere in the code, the permission x @ a must be duplicated. In the absence
of any assumption about the type a, this is not permitted.

One could assign find the following type, where the type parameter a is required to be duplicable:

val find: [a] (

xs: list a,

pred: a -> bool

| duplicable a

) -> option a

Naturally, this does not solve the problem. This means that find is supported only in the easy case where the
elements are shareable. This is an important special case: we explain later on (§3.3) that, provided one is willing
to perform dynamic ownership tests, one can always arrange to be in this special case. Nevertheless, it is desirable
to offer a solution to the borrowing problem. In the following, we give an overview of two potential solutions,
each of which has shortcomings.

A solution in continuation-passing style A simple approach is to give up control. Instead of asking find to
return the desired element, we provide findwith a function that describes what we want to do with this element.
The signature of find thus becomes:

37

3. A Mezzo tutorial

val find: [a] (

xs: list a,

pred: a -> bool,

f: (x: a) -> ()

) -> ()

Recall that, inMezzo, a function argument that is not annotated with the keyword consumes is preserved: that
is, the function requires and returns a permission for this argument. Thus, this version of find preserves xs @

list a. The function f, which the user supplies, preserves x @ a, where x is some element of the list. That is, f is
allowed to work with this element, but must eventually relinquish the permission to use this element. Note that f
does not have access to the list: it does not receive the permission xs @ list a. If it did, the ownership problem
would arise again!

It is indeed possible to write a version of find that admits the above type. One soon finds out, however, that
this type is not expressive enough, as it does not provide any permission to f beside x @ a. This means that f
cannot perform any side effect, except possibly on x. In order to relax this restriction, one must parameterize
find over a permission s, which is transmitted to (and preserved by) f. This is a typical idiom for higher-order
functions in Mezzo.

val find: [a, s: perm] (

xs: list a,

pred: a -> bool,

f: (x: a | s) -> ()

| s

) -> ()

This approach works, but is awkward for a variety of reasons. First, working in continuation-passing style
is unnatural and rigid: elements must be borrowed from the container and returned to the container in a well-
parenthesized manner. Second, it is verbose, especially in light of the fact that, in Mezzo, anonymous functions
must be explicitly type-annotated. In fact, this version of find is just a restricted form of the general-purpose
higher-order function for iterating on a list, iter. So, one may just as well provide iter and omit find.

A solution in direct style The root of the problem lies in the fact that the permissions xs @ list a and x @ a

cannot coexist. Thus, the function find, if written in a standard style, must consume xs @ list a and produce x
@ a. Of course, there must be a way for the user to signal that they are done working with x, at which point they
would like to relinquish x @ a and recover xs @ list a.

Figure 3.11 shows a version of find that follows this idea. The function find requires the permission xs @

list a, which it consumes (line 9). If no suitable element exists in the list, then it returns a unit value, together
with the permission xs @ list a (line 11). If one exists, then it returns a focused element (line 12). This alternative
is expressed via the algebraic data type either (line 10), which is defined in the standard library as follows:

data either a b =

| Left { contents: a }

| Right { contents: b }

The notion of a focused element appears in our unpublished work on iterators, which pose a similar prob-
lem [GPP13]. A focused element (lines 6–7) is a pair of an element x, which has type a, and a function w, a
“magic wand” that takes away x @ a and produces xs @ list a instead. The idea is, when the user is provided
with a focused element (x, w), they can work with x as long as they like; once they are done, they invoke the
function w. This function in principle does nothing at runtime: by calling it, the user tells the type-checker that
they are done with x and would now like to recover the permission to use the list xs.

Mezzo does not currently havemagic wand as a primitive notion. Instead, we define amagic wand (lines 1–4)
as a (runtime) function of no argument and no result, which consumes a permission pre and produces a permis-
sion post. Such a function typically has some internal state, which, conjoined with pre, gives rise to post. In our
definition, this internal state is represented by the existentially quantified permission ammo. Within the existential
quantifier, written {ammo: perm}, is a package of a function that consumes pre * ammo and of one copy of ammo.

38

3.2. Lists

1 alias wand (pre: perm) (post: perm) =

2 {ammo: perm} (

3 (| consumes (pre * ammo)) -> (| post)

4 | ammo)

5

6 alias focused a (post: perm) =

7 (x: a, w: wand (x @ a) post)

8

9 val rec find [a] (consumes xs: list a, pred: a -> bool)

10 : either

11 (| xs @ list a)

12 (focused a (xs @ list a))

13 = match xs with

14 | Nil ->

15 left ()

16 | Cons { head; tail } ->

17 if pred head then begin

18 let w (| consumes (head @ a * tail @ list a))

19 : (| xs @ list a) = () in

20 right (head, w)

21 end

22 else

23 match find (tail, pred) with

24 | Left ->

25 left ()

26 | Right { contents = (x, w) } ->

27 let flex guess: perm in

28 let w’ (| consumes (x @ a * head @ a * guess))

29 : (| xs @ list a) = w() in

30 right (x, w’)

31 end

32 end

Figure 3.11: Borrowing an element from a container in direct style

Because ammo is affine, amagic wand can be used atmost once: it is a one-shot function. The name “ammo” suggests
the image of a gun that needs a special type of ammunition and is supplied with just one cartridge of that type.

Equipped with these (fairly elaborate, but re-usable) definitions, we may explain the definition of find.
At line 15, we have reached the end of the list. We return a left injection, applied to a unit value. The owner-

ship of the (empty) list is returned to the caller.
At line 20, the element head is the onewe are looking for. We return a right injection, applied to a pair of head

and a suitable wand w. This pair forms a focused element. What is a suitable wand in this case? It should have type
wand (head @ a) (xs @ list a). The function w defined at lines 18–19 ostensibly has type (| consumes (head

@ a * tail @ list a)) -> (| xs @ list a). The type-checker is able to verify that the latter is a subtype of
the former; this involves an existential quantifier introduction, taking tail @ list a as the witness for ammo. The
type-checker must also verify that the definition of w matches its declared type. This is indeed the case because
w has access not only to head @ a * tail @ list a, but also to the duplicable permission xs @ Cons { head =

head; tail = tail }. (In Mezzo, a function has access to every duplicable permission that exists at its definition
site.) By combining these three permissions, one obtains xs @ list a, as desired.

At line 25, the desired element has not been found further down: the recursive call to find returns Left.
Even though the code is terse, the reasoning is non-trivial. As we are in the Left branch, we have tail @ list

a. Furthermore, we still possess head @ a and xs @ Cons { head = head; tail = tail }, which were framed
out during the call. The type-checker recombines these permissions and verifies that we have xs @ list a, as

39

3. A Mezzo tutorial

demanded in this case by the postcondition of find.
At line 26 is the last and most intricate case. The desired element x has not been found further down. The

recursive call returns the value x, the permission x @ a, and a wand w that we are supposed to use when we are
done with x. This wand has type wand (x @ a) (tail @ list a). Using it, we build a new wand w’, which has
type wand (x @ a) (xs @ list a).

For the benefit of the reader who would like to understand this code fragment in detail, let us say a little more.
On line 26, the type-checker automatically expands the type of w, which is an abbreviation for an existential type,
and unpacks this existential type. Thus, it views w as a function of type (| consumes (x @ a * ammo)) -> (|

tail @ list a), where ammo is a fresh abstract permission; and it considers that one copy of ammo is available. At
this point, ammo is anonymous: there is no way for the programmer to refer to it. Yet, this permission must be
listed in the header of the function w’: because w’ calls w, it needs the permission ammo. We solve this problem
via the let flex construct on line 27. This construct introduces a flexible variable guess. When the type-checker
examines the call w() on line 29, it is able to guess that guess must be unified with ammo, as there is otherwise no
way for this call to be well-typed⁵. Finally, the type-checker verifies that the definition of w’matches its explicitly-
declared type (the reasoning is analogous to that of lines 18–19) and performs an existential type introduction,
automatically picking head @ a * guess as the witness, in order to prove that w’ has type wand (x @ a) (xs @

list a), as desired. Thus, the pair (x, w’) has type focused a (xs @ list a), as desired. We return it, wrapped
in a right injection

Limits of this approach Thestrength of this approach is that it allows the user towork in direct style, as opposed
to continuation-passing style. The fact that Mezzo’s type discipline is powerful enough to express the concepts of
one-shot function, magic wand, focused element, and to explain what is going on in the find function, is good.
Nevertheless, we are well aware that this solution is not fully satisfactory, and illustrates some of the limitations of
Mezzo, as it stands today.

For one thing, the code is verbose, and requires non-trivial type annotations, in spite of the fact that the type-
checker already performs quite a lot ofwork for us, including automatic elimination and introduction of existential
quantifiers. The effort involved inwriting this code iswell beyondwhatmost programmerswould expect to spend.

A related issue is that the definition of find contains an eta-expansion that turns the w function into a chain
of closures. This makes it all the more difficult for the compiler to efficiently optimize this pattern and figure out
that w and w’ are the same, and that the entire match construct can be replaced by just find(tail, pred).

Figure 3.12 presents an alternative version of the else branchwhere this optimization ismade easier by avoid-
ing allocating a new closure entirely. This is done, unfortunately, using an even more advanced type-theoretic
mechanism, which is an existential packing. Since the type-checker is unable to figure out on its own that w can
be given the desired type, the user can choose to manually instruct the type-checker to hide head @ a * guess as
an existential, so as to assert w @ wand (x @ a) (xs @ list a). The reason why we didn’t show this code sample
in the first place is that it uses yet another advanced feature of Mezzo. It makes it, however, much clearer that the
recursive call is a tail call.

Another criticism is that we encode a magic wand as a runtime function, even though this function has no
runtime effect. Ideally, there should be a way of declaring that a function is “ghost”. The system would check that
this function has no runtime effect (including non-termination). This would eliminate the need for allocating a
pair (x, w) at runtime.

⁵This style of binding an existential variable may seem unusual. However, there are various reasons why a let-unpack construct
would not work.

• For reasons that will become apparent in Chapter 9, we must eagerly open existential quantifiers. This means that by the time
the programmer reaches line 27, the existential variable has been opened already, and there is no opportunity for a manual
let-unpack guess, w = w in

• In Chapter 7, we explain how function types are translated and many more existential quantifiers are actually added onto the
function type. Thismeans thatwewould need an extramechanism to ensure the user can only refer to user-introduced existential
quantifiers, not translation-induced existential variables.

• Several function types may be available for the same variable, and the user has no way in the surface language to “pick” one. The
let flex construct allows to let the type-checking engine pick a suitable instantiation.

This is, granted, not completely satisfactory, and deserves further improvements. The reader should keep in mind, though, that this
code is very much advanced Mezzo, and that we do not expect the casual user to actually deal with this somehow internal details.

40

3.3. Breaking out: arbitrary aliasing of mutable data structures

else begin

let r = find (tail, pred) in

match r with

| Left ->

r

| Right { contents = (x, w) } ->

let flex guess: perm in

pack w @ wand (x @ a) (xs @ list a) witness (head @ a * guess);

r

end

end

end

Figure 3.12: Alternative version of the else branch from Figure 3.11

Limits of both approaches In either approach, when one borrows an element x from a list xs, one gains the
permission x @ a, but loses xs @ list a. This means that at most one element at a time can be borrowed from a
container.

In a way, this restriction makes sense. One definitely cannot hope to borrow a single element x twice, as that
would entail duplicating the affine permission x @ a. Thus, in order to borrow two elements x and y from a single
container, one must somehow prove that x and y are distinct. Such a proof is likely to be beyond the scope of a
type system; it may well require a full-fledged program logic.

At this point, the picturemay seem quite bleak. One thing to keep inmind, though, is that the whole problem
vanishes when the type a is duplicable. This brings us naturally to the next section. We propose a mechanism,
adoption and abandon, which can be viewed as a way of converting between an affine type a and a universal
duplicable type, dynamic. One can then use a container whose elements have type dynamic, and look up multiple
elements in this container, without restriction. Naturally, the conversion from type dynamicback to type a involves
a runtime check, so that attempting to borrow a single element twice causes a runtime failure. Theproof obligation
x ̸= y has been deferred from compile time to runtime.

3.3 Breaking out: arbitrary aliasing of mutable data structures

The type-theoretic discipline that we have presented up to this point allows constructing a composite permission
out of several permissions and (conversely) breaking a composite permission into several components. For in-
stance, a permission for a tree is interconvertible with a conjunction of separate permissions for the root record
and for the sub-trees (§3.2). Thus, every tree-shaped data structure can be described in Mezzo by an algebraic
data type.

There are two main limitations to the expressive power of this discipline.
First, because we adopt an inductive (as opposed to co-inductive) interpretation of algebraic data types, a

permission cannot be a component of itself. In other words, it cannot be used in its own construction. This
holds of both duplicable and affine permissions. Thus, every algebraic data type describes a family of acyclic data
structures. The permission xs @ list int, for instance, means that xs is a finite list of integers. (In this sense,
Mezzo differs from OCaml, which allows constructing a cyclic list⁶.) This choice is intentional: we believe that it
is most often desirable to ensure the absence of cycles in an algebraic data structure.

Second, an affine permission cannot serve as a component in the construction of two separate composite
permissions. Because every mutable memory block (and, more generally, every data structure that contains such
a block) is described by an affine permission, this means thatmutable data structures cannot be shared. Put another
way, this discipline effectively imposes an ownership hierarchy on the mutable part of the heap.

When one wishes to describe a data structure that involves a cycle in the heap or the sharing of a mutable
sub-structure, one must work around the restrictions described above. This requires extra machinery.

⁶ In OCaml, one can write let rec x = 0 :: 1 :: x, that is, one can define recursive values.

41

3. A Mezzo tutorial

1 data mutable node a =

2 Node {

3 value : a;

4 visited : bool;

5 neighbors: list (node a);

6 }

7

8 val _ : node int =

9 let n = Node {

10 value = 10;

11 visited = false;

12 neighbors = ();

13 } in

14 let ns = Cons { head = n; tail = Nil } in

15 n.neighbors <- ns;

16 n

Figure 3.13: A failed attempt to construct a cyclic graph

Illustration In order to illustrate the problem, let us define a naïve type of graphs and attempt to construct the
simplest possible cyclic graph, where a single node points to itself.

The definition of the type node is straightforward (Figure 3.13, lines 1–6). Every node stores a value of type a,
where the type variable a is a parameter of the definition; a Boolean flag, which allows this node to be marked
during a graph traversal; and a list of successor nodes. The type node is declared mutable: it is easy to think of
applications where all three fields must be writable.

Next (lines 8–16), we allocate one node n, set its neighbors field to a singleton list of just n itself, and claim
(via the type annotation on line 8) that, at the end of this construction, n has type node int. This code is ill-typed,
and is rejected by the type-checker. Perhaps surprisingly, the type error does not lie at line 15, where a cycle in
the heap is constructed. Indeed, at the end of this line, the heap is described by the following permission:

n @ Node {

value : int;

visited : bool;

neighbors = ns;

} *

ns @ Cons { head = n; tail: Nil }

This illustrates the fact that a cycle of statically known length can be described in terms of structural permis-
sions and singleton types. The type error lies on line 16, where (due to the type annotation on line 8) the type-
checker must verify that the above permission entails n @ node int. This entailment is invalid because it violates
the first limitation that was discussed earlier: since the algebraic data type node is interpreted inductively, a node
cannot participate in its own construction. Furthermore, even if a co-inductive interpretation was adopted, this
entailment would still be invalid, as it would then violate the second limitation that was discussed above: since n
@ Node { ... } is affine, it cannot be used to separately justify that n is a node and ns is a list of nodes.

To sumup, the type node at lines 1–6 is not a typeof possibly cyclic graphs, as onemight havenaïvely imagined.
It is in fact a type of trees, where each tree is composed of a root node and a list of disjoint sub-trees.

A solution The problem with this naïve approach stems from the fact that types have an ownership reading.
Saying that neighbors is a list of nodes amounts to claiming that every node owns its successors, which does not
make sense, because ownership must be a hierarchy.

In order to solve this problem, we must allow a node to point to a successor without implying that there is an
ownership relation between them. “Who” then should own the nodes? A natural answer is, the set of all nodes
should be owned as a whole by a single distinguished object, say, the “graph” object.

42

3.3. Breaking out: arbitrary aliasing of mutable data structures

data mutable node a =

Node {

content : a;

visited : bool;

neighbors: list dynamic;

}

data mutable graph a =

Graph {

roots : list dynamic;

} adopts node a

val g : graph int =

let n = Node {

content = 10;

visited = false;

neighbors = ();

} in

let ns = Cons { head = n; tail = Nil } in

n.neighbors <- ns;

assert n @ node int * ns @ list dynamic;

let g : graph int = Graph { roots = ns } in

give n to g;

g

val dfs [a] (g: graph a, f: a -> ()) : () =

let s = stack::new g.roots in

stack::work (s, fun (n: dynamic

| g @ graph a * s @ stack dynamic) : () =

take n from g;

if not n.visited then begin

n.visited <- true;

f n.content;

stack::push (n.neighbors, s)

end;

give n to g

)

Figure 3.14: Graphs, a cyclic graph, and depth-first search, using adoption and abandon

43

3. A Mezzo tutorial

Figure 3.14 presents a corrected definition of graphs, and shows how to build the cyclic graph of one node. It
also contains code for an iterative version of depth-first search, using an explicit stack. Let us explain this example
step by step.

The type dynamic The only change in the definition of node a is that the neighbors field now has type list

dynamic (line 8).
The meaning of n @ dynamic is that n is a valid address in the heap, i.e., it is the address of a memory block.

When one allocates a new memory block, say via let n = Node { ... } in ..., one obtains not only a struc-
tural permission n @ Node { ... }, but also n @ dynamic. Although the former is affine (because Node refers to a
mutable algebraic data type), the latter is duplicable. Intuitively, it is sound for the type dynamic to be considered
duplicable because the knowledge that n is a valid address can never be invalidated, hence can be freely shared.
However, the permission n @ dynamic does not allow reading or writing at this address. In fact, it does not even
describe the type of the memory block that is found there–and it cannot, since this block is owned by “someone
else” and its type could change with time.

Because it is duplicable, the type dynamic does not have an ownership reading. The fact that neighbors has
type list dynamic does not imply that a node owns its successors; it means only that neighbors is a list of heap
addresses.

Constructing a cyclic graph As an example, we construct a node that points to itself (lines 17–24). The con-
struction is the same as in Figure 3.13. This time, it is well-typed, though. Because we have n @ dynamic, we can
establish ns @ list dynamic, and, therefore, n @ node int. Furthermore, since ns @ list dynamic is duplicable,
it is not consumed in the process. The (redundant) static assertion on line 24 shows that the desired permissions
for n and ns co-exist.

The type graph a (lines 11–14) defines the structure of a “graph” object. This object contains a list of so-called
root nodes. Like neighbors, this list has type list dynamic. Furthermore, the adopts clause on line 14 declares
that an object of type graph a adopts a number of objects of type node a. This is a way of saying that the graph
“owns” its nodes. Thus, an object of type graph int is an adopter, whose adoptees are objects of type node int.
The set of its adoptees changes with time, as there are two instructions, give and take, for establishing or revoking
an adoptee-adopter relationship.

The give and take instructions The runtime effect of the adoption instruction give n to g (line 26) is that the
node n becomes a new adoptee of the graph g. At the beginning of this line, the permissions n @ node int and g

@ graph int are available. Together, they justify the instruction give n to g. (The type-checker verifies that the
type of g has an adopts clause and that the type of n is consistent with this clause.) After the give instruction, at
the end of line 26, the permission n @ node int has been consumed, while g @ graph int remains. A transfer of
ownership has taken place: whereas the node nwas “owned by this thread”, so to speak, it is now “owned by g”. The
permission g @ graph int should be interpreted intuitively as a proof of ownership of the object g (which has
type graph int) and of its adoptees (each of which has type node int). It can be thought of as a conjunction of a
permission for just thememory block g and a permission for the group of g’s adoptees; in fact, in our formalization
([BPP14b]), these permissions are explicitly distinguished.

Although g @ graph int implies the ownership of all of the adoptees of g, it does not indicate who these
adoptees are: the type system does not statically keep track of the relation between adopters and adoptees. After
the give instruction at line 26, for instance, the system does not know that n is adopted by g. If one wishes to
assert that this is indeed the case, one can use the abandon instruction, take n from g. The runtime effect of
this instruction is to check that n is indeed an adoptee of g (if that is not the case, the instruction fails) and to
revoke this fact. After the instruction, the node n is no longer an adoptee of g; it is unadopted again. From the
type-checker’s point of view, the instruction take n from g requires the permissions n @ dynamic, which proves
that n is the address of a valid block, and g @ graph int, which proves that g is an adopter and indicates that its
adoptees have type node int. It preserves these permissions and (if successful) produces n @ node int. This is
a transfer of ownership in the reverse direction: the ownership of n is taken away from g and transferred back to
“this thread”.

Conceptual model The adopter owns its adoptees. Conceptually, one can think of the adopter as an object
which maintains a list of the elements that it owns, inserting new elements as give operations take place, and

44

3.3. Breaking out: arbitrary aliasing of mutable data structures

taking them out as take operations are performed. More precisely, if the adopter “adopts t”, then one can think
of it as owning a “list t” of its adoptees.

This conceptual viewof adoption and abandon can be implemented inMezzo as a library. The library is shown
and commented in §4.2. We chose, however, to use amore optimized representationwhich performs the give and
take operations in constant time, at the cost of an extra memory word.

Runtimemodel Wemaintain a pointer from every adoptee to its adopter. Within every object, there is a hidden
adopter field, which contains a pointer to the object’s current adopter, if it has one, and null otherwise. This
information is updatedwhen an object is adopted or abandoned. In terms of space, the cost of this design decision
is one field per object⁷.

The runtime effect of the instruction give n to g is to write the address g to the field n.adopter. The static
discipline guarantees that this field exists and that its value, prior to adoption, is null.

The runtime effect of the instruction take n from g is to check that the field n.adopter contains the address g
and to write null into this field. If this check fails, the execution of the program is aborted. We also offer an
expression form, g adopts n, which tests whether n.adopter is g and produces a Boolean result.

Illustration We illustrate the use of adoption and abandon with the example of depth-first search (Figure 3.14,
lines 29–40). The frontier (i.e., the set of nodes that must be examined next) is represented as a stack; we rely on
the stackmodule of Figure 3.10. The stack s has type stack dynamic. We know (but the type-checker does not)
that the elements of the stack are nodes, and are adoptees of g.

The function dfs initializes the stack (line 30) and enters a loop, encoded as a call to the higher-order function
stack::work. At each iteration, an element n is taken out of the stack; it has type dynamic (line 31). Thus, the
type-checker does not know a priori that n is a node. The take instruction (line 33) recovers this information. It
is justified by the permissions n @ dynamic and g @ graph int and (if successful) produces n @ node int. This
proves that n is indeed a node, which we own, and justifies the read and write accesses to this node that appear at
lines 34–37. Once we are done with n, we return it to the graph via a give instruction (line 39).

There are various mistakes that the programmer could make in this code and that the type-checker would
not catch. Forgetting the final give would be one such mistake; it would lead to a runtime failure at a later take
instruction, typically on line 33. In order to diminish the likelihood of this particular mistake, we propose taking
n from g begin ... end as syntactic sugar for a well-parenthesized use of take and give.

Discussion Because adoption and abandon are based on a runtime test, they are simple and flexible. If one
wished to avoid this runtime test, one would probably end up turning it into a static proof obligation. The proof,
however,may be far from trivial, inwhich case the programmerwould have to explicitly state subtle logical proper-
ties of the code, and the systemwould have to offer sufficient logical power for these statements to be expressible.
The dynamic discipline of adoption and abandon avoids this difficulty, and meshes well with the static discipline
of permissions. Webelieve thatwehave a clear story for the user: “when youneed to sharemutable data structures,
use adoption and abandon”.

Adoption and abandon are a very flexible mechanism, but also a dangerous one. Because abandon involves a
dynamic check, it can cause a fatal failure at runtime. In principle, if the programmer knows what they are doing,
this should never occur. There is some danger, but that is the price to pay for a simpler static discipline. After all,
the danger is effectively less than in ML or Java, where a programming error that creates an undesired alias goes
completely undetected—until the program misbehaves in one way or another.

To the best of our knowledge, adoption and abandon are new. Naturally, the concept of group, or region, has
received sustained interest in the literature [CWM99,DF01, FD02, SHM+06]. Regions are usually viewed either
as a dynamicmemorymanagementmechanism or as a purely static concept. Adoption and abandon, on the other
hand, offer a dynamic ownership control mechanism, which complements our static permission discipline.

One could see our contribution as twofold. First, we identify the name of the object with the name of the
dynamic region. This makes the story easier to explain to the user. Instead of introducing a notion of region

⁷It would be possible to lessen this cost by letting the programmer decide, for each data type, whether the members of this type
should be adoptable (hence, should contain an adopter field) or not. Furthermore, one could note that there should never be a need
for an immutable object to be adoptable. One should then restrict the tag update instruction so as to forbid going from an adoptable
data type to a non-adoptable one, or vice-versa. For the moment, for the sake of simplicity, we consider only the uniform model where
every object has an adopter field.

45

3. A Mezzo tutorial

along with the ownership of that region, we merely talk about transfer of ownership, saying that the ownership
is transferred from the currently executing thread to another object. We also only ever mention one name, thus
simplifying things. Our second contribution is the optimized representation using the hidden field. To the best
of our knowledge, this is a novel mechanism.

One might wonder why the type dynamic is so uninformative: it gives no clue as to the type of the adoptee
or the identity of the adopter. Would it be possible to parameterize it so as to carry either information? The
short answer is negative. The type dynamic is duplicable, so the information that it conveys should be stable (i.e.,
forever valid). However, the type of the adoptee, or the identity of the adopter, may change with time, through a
combination of strong updates and give and take instructions. Thus, it would notmake sense for dynamic to carry
more information.

That said, webelieve that adoption andabandonwill oftenbeused according to certain restrictedprotocols, for
whichmore information is stable, hence can be reflected at the type level. For instance, in the bag implementation,
a cell only ever has one adopter, namely a specific bag b. In that case, one could hope toworkwith a parameterized
type dynamic′ b, whosemeaningwould be “either this object is currently not adopted, or it is adopted by b”. Ideally,
dynamic′ would be defined on top of dynamic in a library module, and its use would lessen the risk of confusion.

The new presentation of adoption/abandon (§8.8) adresses this criticism and allows the user to define, in a
library, restricted give and take primitives, which provide more safety in exchange for less flexibility: an object
can be declared to be “dedicated” to only one adopter for the entire course of its lifetime. We believe, from our ex-
periencewritingMezzo programs, that this pattern covers themajority of cases, and that once the implementation
is updated to use the new adoption/abandon, users will benefit from the added safety.

Another frequently asked question is why, once an exclusive permission goes out of scope, the object cannot
be deallocated. The reason is, the user might still have a pointer to it via the dynamic type, meaning that we would
need a runtime system that supports dangling pointers. This seems hard to accomodate with the presence of a
garbage-collector.

Future work The current presentation of adoption/abandon has been refined and is more powerful in the for-
malization ofMezzo. The implementation is lagging behind and still features the “old” adoption/abandon, which
we just described. §8.8 discusses this in greater detail.

A drawback of the current mechanism is the cost of bulk ownership transfer. Consider, for instance, the case
where the user wishes to merge two graphs g1 and g2 together. As of now, the user cannot just do g1.roots <-

append (g1.roots, g2.roots);: they need to take each node from g2, and give it to g1. A way to solve this
problem is to add yet another hidden field for each object. The field would be used to implement a union-find
mechanism on regions. An address in the field would stand for a link, while a null pointer would indicate that
the representative of the equivalence class has been found. Path compression can be performed for each adoptee
when a lookup is performed. Merging two objects g1 and g2 is a constant-time operation, where the address of g1
is written in the new hidden field of g2. A potential drawback is that this mechanism prevents the collection of g2
until all path compressions have been performed.

Having two hidden fields would be a significant runtime penalty. The current implementation already uses
one extra word per object: one may wish to allow the user to decide whether they want to use an extra word or
not. An idea we have thus explored is to have two modes (§8.4): either “fat exclusive” or “slim exclusive”. Only
the former would have the hidden field. This slightly complicates the formalization, especially for things related to
mode computation. This also exposes some implementation details in the semantics of the language: tag updates
become possible only between objects with the same “fitness” (slim or fat), due to the size of the underlying
blocks.

A last drawback that has bitten us is the restriction that an adopter must be exclusive. This is required for
soundness; in the concurrent case, however, this means that if multiple threads compete for taking objects, they
must not only use the adoption/abandonmechanism, but also a lock for acquiring ownership of the adopter first.
It would be possible to allow adopters to be duplicable; this would require, however, an implementation of take
based on a compare-and-swap primitive, along with a new try_take operation.

More generally, adoption/abandon is only just one means of escaping the restrictions of strict aliasing. We
offer another such means later on (§4.1), but experience from other projects such as Cyclone [SHM+06] seems
to suggest that awide variety of escape hatches is needed. Thedifficulty of expressing the borrowing pattern seems
to indicate the wemay need a primitivemechanism for borrowing, similar to what has been done in Rust. In Rust,
one may borrow the contents of a uniquely-owned box. If &x borrows a field from a uniquely-owned memory

46

3.3. Breaking out: arbitrary aliasing of mutable data structures

block y, then y is statically invalidated as long as &x is alive. A similarmechanismmaybe useful forMezzo: onemay
return a “borrowed pointer” into a list, which renders the list unusable unless the borrowed pointer is discarded.

On a related note, fractional permissions also seem quite popular, and Mezzo currently does not offer a way
to share a mutable piece of data in a read-only manner (the “const” keyword). Fractional permissions would be a
way to solve this aliasing problem.

47

4. Bits from the
standard library
The present chapter presents a few excerpts from the Mezzo standard library. These code snippets are somewhat
advanced, and sometimes, rather technical. I believe, though, that they illustrate faithfully the expressive power
of Mezzo.

4.1 Nesting

Themain drawback of our adoption/abandonmechanism is that it relies on run-time tests, meaning that there
is a performance penalty when executing the program. Other means of handling arbitrary aliasing over mutable
data structures have been proposed. One of them is Boyland’s nesting [Boy10].

Unlike adoption/abandon, nesting is a purely static mechanism. In essence, it allows to transfer ownership of
a permission to another permission.

We axiomatize nesting in Mezzo; the result is slightly different in that it allows to transfer ownership of a
permission to another object. The technical ingredients that allow us to axiomatize a theory are:

• abstract permissions, declared at top-level with the abstract keyword; abstract permissions, just like regu-

1 abstract nests (x : value) (p : perm) : perm

2 fact duplicable (nests x p)

3

4 val nest: [x : value, p : perm, a]

5 exclusive a => (| x @ a * consumes p) -> (| nests x p)

6

7 abstract punched (a : type) (p : perm) : type

8

9 val focus: [x : value, p : perm, a]

10 exclusive a => (| consumes x @ a * nests x p) -> (| x @ punched a p * p)

11

12 val defocus: [x : value, p : perm, a]

13 (| consumes (x @ punched a p * p)) -> (| x @ a)

14

15 val nest_punched: [x : value, p : perm, a, q : perm]

16 (| x @ punched a q * consumes p) -> (| nests x p)

Figure 4.1: Axiomatization of nesting in Mezzo

49

4. Bits from the standard library

lar data types, may be parameterized and one may reveal facts about them;

• our module mechanism, which allows us to offer the axioms as an interface (Figure 4.1), with an imple-
mentation that performs no operation at run-time.

Axiomatization

Let us see how nesting works and is axiomatized in Mezzo.
The key type is nests x p (lines 1–2), which asserts that the object x (a program variable at kind value) owns

the permission p (an abstract permission variable at kind perm). This information, just like the dynamic type, is
duplicable. We call it a nesting witness.

Just like one can use our give operation, one can, with nesting, transfer ownership of a permission p to a
variable x through the nest operation (line 4). For this operation to work, the owner xmust be exclusive, which,
again, is reminiscent of adoption/abandon. The permission p is lost by the caller, who gains in exchange a witness
that p is now owned by x.

Aside: the exclusive requirement We have seen the duplicable a requirement already; the code uses a new
requirement, namely exclusive a. Having x @ t with t exclusive guarantees that we have unique ownership of
the memory block at address x. Having a mere affine t does not guarantee unique ownership: one could, for
instance, turn a duplicable type into an affine type via type abstraction. A corollary is that having x @ t * x @ u

is impossible (i.e. it implies⊥) and denotes an unreachable piece of code.
All mutable types have a unique owner inMezzo: they are thus exclusive. We have seen the type cell awhich

is defined as mutable in Figure 3.9: such a type satisfies the exclusive requirement.

Since this is purely static, there is no way one can permanently regain ownership of p. Indeed, nests x p is
duplicable (line 2). Allowing one to permanently regain p means that the operation could be carried out several
times, using several copies of nests x p.

What nesting provides, instead, is a pair of focus (line 9) and defocus (line 12) functions.
The focus function temporarily regains ownership of a permission p currently owned by x, using the adequate

nesting witness. The caller does regain p; however, the exclusive permission x @ a is consumed. What the caller
gains instead is x @ punched a p, which embodies the fact that x @ a is no longer usable, becausewe took p from x.
In other words, we “punched a hole into x”.

Changing the type of x effectively prevents further calls to focus, hence preserving soundness.
(Let us imagine for a moment we wished to allow calling focus on a punched object. For this to be sound, the

user would need to prove that they are punching a different permission than the one already punched out. In our
adoption/abandonmechanism, this proof obligation is fulfilled via the run-time test. If the test succeeds, we learn
that x and x’ are physically distinct, meaning that the caller can safely be granted x @ t and x’ @ t. Lacking any
similar facility for nesting, the user must not be allowed to call focus on a punched object.)

After a focus operation, the user is free to use p as they wish; should they need to recover the permission for x,
they can call defocus (line 12), which trades x @ punched a p * p for the original x @ a. We “plug the punched
hole”.

One should note that it is possible to nest further objects while x is punched via nest_punched (line 15).

1 Having two different function types is unsatisfactory; it turns out that we can attachmultiple function types to the
same value, using multiple permissions. This amounts to expressing function overloading in Mezzo.

One can, for instance, change the signature of nest, and replace nest_punched with:

val nest_: (| nest @ [x : value, p : perm, a, q : perm] (| x @ punched a q * consumes p)

-> (| nests x p))

The net effect is that, upon processing this signature item, the type-checker adds nest_ @ () to the current
permission, along with the new permission nest @ One could conceivably allow in the syntax val _ and get
rid of the (useless) nest_ name.

This poses inference challenges, however. In the case of nesting, one frequently instantiates polymorphic quan-
tifiers manually, as the type-checker has no way of figuring out which permission should nest. The result is that,
when confronted with nest [x, p], the type-checker must return two instantiated function types, suitable for

50

4.1. Nesting

1 abstract region

2

3 abstract element (ρ: value) a

4 fact duplicable (element ρ a)

5

6 val new: () -> region

7

8 val create: [a] duplicable a => (ρ: region, x: a) -> element ρ a

9

10 val repr: [a] duplicable a => (ρ: region, e: element ρ a) -> element ρ a

11

12 val unify: [a] duplicable a => (ρ: region, x: element ρ a, y: element ρ a) -> ()

13

14 val find: [a] duplicable a => (ρ: region, x: element ρ a) -> a

Figure 4.2: A union-find data structure implemented with nesting (interface)

performing a function call. While the type-checker backtracks at the function call level, it does not backtrack at
the type application level. For that reason, we left the extra nest_punched value in the interface.

Limitations

Nesting onlyworkswhenever elements can be given up forever. Implementing, for instance, a bag interface, where
one puts and retrieves elements, is not possible with nesting.

Also, nesting cannot express situations where two elements need to be taken out at the same time, which
somehow limits its expressiveness, or requires the user to jump through hoops. The example below illustrates
this.

Sample usage

We demonstrate the implementation of a union-find data structure using nesting, whose interface is shown in
Figure 4.2. The data structure offers equivalence classes (the element type); the client may create a new class
distinct from all the other ones (using create); the client may unify two classes (using unify). Moreover, each
class is associated with a representative; the client may ask for the representative associated to a class (using repr);
determining whether two classes are equivalent thus amounts to checking that they have the same representative.

The data structure is imperative: the unify operation operates in-place, that is, performs an internal mutation.
The equivalence classes thus contain mutable data, meaning that they have a unique owner. The client, however,
wishes to keep several pointers onto the same class. This is a typical case where we need unrestricted aliasing of
mutable data. In Mezzo, this requires the use of an escape mechanism; I chose to use nesting.

Our implementation is shown in Figure 4.3. It performs only one of the two classical optimizations, namely
path compression (the other classical optimization does not pose a technical difficulty).

We declare the constructor of regions (line 1); this is the exclusive object where classes will nest. There is one
region per instance of the union-find data structure, meaning that creating a fresh union-find creates a new region
where classes will live. The region embodies the ownership of the classes, meaning it is up to the caller to properly
thread the region object in a linear manner.

Inhabitants of the region are either Link or Root constructors (line 3): these are the objects that the client
manipulates. Twoobjects are equivalent if following the linkfields leads onto the same Root. Merging twoobjects
involves finding their respective Roots and turning one of them into a Link to the other one.

Imentioned earlier that the clientwishes to keepmultiple pointers into the sameequivalence class: thismeans,
concretely, that the client wishes to keep pointers to either Link or Root objects; these objects are, however, mu-
table, which is why we will use nesting to handle aliasing of mutable data. The problem does not just occur within
the client code: internally, multiple Link objects may point to the same Root, meaning that even within the im-
plementation, mutable data is aliased. The use of an escape hatch is thus doubly mandatory.

51

4. Bits from the standard library

1 data mutable region = UnionFind

2
3 data mutable inhabitant (ρ: value) a =

4 | Link { link: element ρ a }

5 | Root { descr: a }

6
7 and element (ρ: value) a =

8 | Element { element:: unknown | nests ρ (element @ inhabitant ρ a) }

9
10 val new (): region =

11 UnionFind

12
13 val create [a] duplicable a => (ρ: region, x: a): element ρ a =

14 let e = Root { descr = x } in

15 nest [ρ, (e @ inhabitant ρ a)] ();

16 Element { element = e }

17
18 val rec repr [a] duplicable a => (ρ: region, e: element ρ a): element ρ a =

19 let elt = e.element in

20 focus [ρ] ();

21 match elt with

22 | Link { link } ->

23 defocus [ρ] ();

24 let r = repr (ρ, link) in

25 focus [ρ, (elt @ inhabitant ρ a)] ();

26 match elt with

27 | Link ->

28 elt.link <- r;

29 defocus [ρ] ();

30 r

31 | Root -> fail

32 end

33 | Root ->

34 defocus [ρ] ();

35 e

36 end

37
38 val unify [a] duplicable a => (ρ: region, x: element ρ a, y: element ρ a): () =

39 let x = repr (ρ, x) and y = repr (ρ, y) in

40 if x == y then

41 ()

42 else begin

43 let elt_x = x.element in

44 focus [ρ, (elt_x @ inhabitant ρ a)] ();

45 match elt_x with

46 | Link -> fail

47 | Root ->

48 tag of elt_x <- Link;

49 elt_x.link <- y

50 end;

51 defocus [ρ] ();

52 end

53
54 val find [a] duplicable a => (ρ: region, x: element ρ a): a =

55 let r = repr (ρ, x) in

56 let elt = r.element in

57 focus [ρ, (elt @ inhabitant ρ a)] ();

58 let v =

59 match elt with

60 | Root -> elt.descr

61 | Link -> fail

62 end

63 in

64 defocus [ρ] ();

65 v

Figure 4.3: A union-find data structure implemented with nesting

52

4.1. Nesting

We nest inhabitants inside the region, so as to get duplicable instances of the element type (line 8). The client
of the module thus manipulates objects of type element which, being duplicable, allow them to hold multiple
pointers into the same equivalence class.

1 The declaration of the element type uses a binding field element::. The double colon signals that the field name
also introduces a fresh binding, which is bound for the whole record.

1 Using a data type for element seems overkill, as a simple type alias could, in theory, work. It turns out thatMezzo
does not allow recursively-defined alias declarations. There is thus no support formutual recursion between alias
definitions and data definitions.

Creating a new region (line 10) and creating a new equivalence class (line 13) are straightforward. Let us just
notice that we demand the data stored in each equivalence class to be of a duplicable type a. In case the data are
not duplicable, we leave it up to the user to use an appropriate abstraction and figure out who owns the elements.
We also use at line 15 a type application. Lacking any annotation, the type-checker is facedwith toomany choices
for the actual permission to nest into the region.

Finding the representative of an equivalence class (line 18) requires walking up the chain of Link inhabitants,
until we find the Root one. The function leaves the region ρ intact (i.e, not punched): the pre- and post-condition
of repr mention ρ with type region, while the element returned is nested. A consequence for the caller is that
they have to call focus.

1 One could consider a symmetrical signature where repr does not return the region intact, but punched. The return
valuewould then be of type Root { descr: a }, hence requiring the client to call defocus (instead of focus) once
they’re done with the inhabitant. I explain later why this is not a good design.

Letme now explain the repr function in greater detail. The first step consists in focusing the element (line 20)
to obtain the “original” permission for it. This allows us to figure whether it’s a Link or a Root. The latter case is
easier: we merely need to defocus the element and return it. This satisfies the function’s post-condition, which is
that the region ρ is returned in its original state.

In case the element is not a root (line 22), we need to call ourselves recursively to find the root. The recursive
call to repr will not work with a punched ρ; we thus defocus elt (line 23), meaning we lose the permission elt

@ inhabitant ρ a. We retain, however, the permission link @ element ρ a which is duplicable. This allows us
to call repr recursively on line 24.

Once the recursive call returns, we need to perform path compression, that is, write r into the link field of
elt. We no longer know, however, that elt is a Link: indeed, for the recursive call to take place, we had to give up
our permission elt @ Link { ... }. We thus need to discriminate again on elt. This makes sense: the recursive
call could have, potentially, mutated elt. We do know, however, that our data structure does not contain cycles:
we have the (unchecked) invariant that elt is not reachable via the link field. This means that the recursive call
could not modify elt, hence that it is still a Link and that the Root case is impossible (line 31). We perform path
compression then finally defocus (line 29) so as to return an element along with a region.

The repr function is tricky: the pair of focus and defocus operations is not syntactically well-parenthesized.
It is, however, operationally well-parenthesized. Conversely, the unify and find functions are simpler and contain
well-parenthesized uses of focus and defocus.

In the alternative design I mentioned earlier, repr would have the following type:

val rec repr: [a] duplicable a =>

(ρ: region, e: element ρ a) ->

(elt: Root { descr: a } | ρ @ punched ρ (elt @ Root { descr: a })

This signature has two drawbacks. First, it is up to the caller to call defocus once they are done with elt; this
usage of focus and defocus is ill-parenthesized across the client/library interface and requires us to expose nesting
to the client. Second, it would prevent the two successive calls to repr in unify from succeeding, as one would
have to insert a call to defocus in-between.

The interface of the module is shown in Figure 4.2. One thing to note is that we do not reveal our internal
usage of nesting to the client. Another thing to note is that a similar implementation can be achieved using our

53

4. Bits from the standard library

adoption/abandon discipline, and that the interface would not change. We thus restrict the use of dynamic to the
library, and do not expose this information to the client thanks to an abstract type. This thus alleviates the risks
associated to the seemingly weak nature of the dynamic type.

On to static regions

Nesting can be used as the basis for a library of regions, whose interface matches that of Charguéraud and Pot-
tier [CP08]. We do not show the implementation, which is available in the standard library distributed alongwith

st
dl
ib

/r
eg
io

n.
mz
i the Mezzo type-checker. It allows re-implementing the union-find algorithm in an even more concise manner.

te
st

s/
un

io
n-
fi

nd
-r

eg
io
n.

mz

4.2 Adoption/abandon as a library

Wementioned earlier (§3.3) that the adoption/abandon feature ofMezzo can be defined in a library. Indeed,
one can conceptually think of the adopter as possessing a list of its adoptees; take’ing amounts to removing an
element from the list while give’ing amounts to adding an element to the list. The code snippet from Figure 4.4
does precisely that.

An adopter is a list of its adoptees (line 4). The list is stored in a reference so as to be mutable. The user has to
allocate a new adopter (line 11) and pay the price of an extra indirection; there is no support here for the built-in
“adopts” clause.

The dynamic_ type is implemented using unknown (line 6), which is our top type at kind type: the permission
x @ unknown is always available for any x. The user can obtain x @ dynamic_ at any time, for any x, using the
dynamic_appears function (line 8). This has a run-time cost; the function could conceivably be marked as ghost
if we had such a mechanism. Again, lacking any built-in support, we lose the subsumption rule that allows one to
obtain x @ dynamic out of thin air (DynamicAppears, §8.2).

While the library can be used with duplicable elements, it makes little sense to do so; we could, should we
wish to, restrict the usage of the library by adding exclusive t => in front of all the functions.

The give_ function (line 14) is as simple as one could expect. The signature of the function corresponds to
what the regular give operation does.

The take_ function has been made fallible through the use of a rich boolean (§4.4). One could define a non-
fallible version of it by using the fail keyword. This function is certainly the most interesting in the library. Its
post-condition specifies that, should the operation be successful, the caller gains child @ t in addition to child @

dynamic_. The function thus cannot afford to just return an option t, since the caller would lose the knowledge
that the element returned is the child object.

The search auxiliary function runs through the list (line 22) of adoptees and looks for one that is physically
equal to child. It returns either the original list minus the element found, along with the knowledge that child
now has type t (this is a success), or the original list, untouched (this is a failure). The search function uses a
zipper, that is, it keeps a reversed list of the elements it has visited so far (the prev parameter) and examines the
remaining elements (the l parameter).

The function uses the physical comparison (==) operator, which has the following type:

val (==) : (x: unknown, y: unknown) -> rich_bool empty (x = y)

That is, if one learns that x and y are physically equal, then in the then branch, the current permission is aug-
mented with the x = y permission.

If the head of the list is child (line 29), the type-checker thus refines the environment with the head = child

permission. We return all the elements that originally were in the list, save for head, using a call to rev_append. We
return the left case: the type-checker checks, per the function’s post-condition, that the return value is indeed a
list t; using head = child * head @ t, it also checks that child @ t has become available.

If the head of the list is not child (line 31), we move the zipper one element forward and search for child in
the remaining elements.

If nomore elements remain to be searched (line 34), thismeans that childwas not found in the list: we return
the original list, which is the reverse of prev.

Finally, we call the search function (line 39). Since the function consumes the ownership of the children list,
we need to write back into parent the list of remaining children. We return the correct boolean value.

54

4.2. Adoption/abandon as a library

1 open list

2 open either

3

4 alias adopter_ t = ref (list t)

5

6 alias dynamic_ = unknown

7

8 val dynamic_appears (x: _): (| x @ dynamic_) =

9 ()

10

11 val new_ [t] (): adopter_ t =

12 newref nil

13

14 val give_ [t] (parent: adopter_ t, child: (consumes t)): (| child @ dynamic_) =

15 parent := cons (child, !parent)

16

17 val take_ [t] (

18 parent: adopter_ t,

19 child: dynamic_

20): rich_bool empty (child @ t) =

21

22 let rec search (

23 consumes prev: list t,

24 consumes l: list t

25): either (list t | child @ t) (list t) =

26

27 match l with

28 | Cons { head; tail } ->

29 if head == child then

30 left (rev_append (prev, tail))

31 else

32 search (cons (head, prev), tail)

33 | Nil ->

34 right (rev prev)

35 end

36

37 in

38

39 match search (nil, !parent) with

40 | Left { contents } ->

41 parent := contents;

42 true

43 | Right { contents } ->

44 parent := contents;

45 false

46 end

Figure 4.4: Adoption/abandon as a library

55

4. Bits from the standard library

1 alias osf a b = {p: perm} (

2 (consumes (a | p)) -> b

3 | p

4)

5

6 val make: [a, b, p: perm] ((consumes (a | p)) -> b | consumes p) -> osf a b =

7 identity

Figure 4.5: Affine closures as a library

This approach, as a library, naturally has several drawbackswhencompared to the in-language adoption/abandon
mechanism. The user has to request dynamic_ explicitly as it is no longer part of the subsumption relation. The
user pays for an extra indirection because the adopter field cannot be allocated inline. Also, the more efficient
implementation with a hidden field is replaced by a linear search. More fundamentally, though, the direction is
reversed: instead of a pointer from adoptee to adopter, the in-library approach uses a pointer from adopter to
adoptee.

It is a good thing, however, that the mechanism should be expressible as a library; it provides, in a sense, a
guarantee that our language has enough expressive power.

4.3 One-shot functions

I now turn to another interesting excerpt from the standard library, which is that of one-shot functions, a.k.a.
affine closures. These form the basis for other libraries, such as iterators.

In type systemswhichpossess anotionof linearity, oneneeds tobe carefulwith closures. Someworks [HP05](§1),
[TP10] distinguish between duplicable closures, which can only capture duplicable elements, and affine closures,
which can capture all elements, but may only be called once. Mezzo, in contrast, offers only duplicable closures.

We show how to define, as a library, one-shot functions, that is, functions that can capture affine permissions
and may only be called once (Figure 4.5), thus sustaining our claim that allowing only duplicable closures is not
a restriction.

A one-shot function is defined (line 1) as the conjunction of a function from a to b, which requires some
permission p to be called, and the permission p itself. The exact nature of p depends on the function itself; in one
case p may happen to be r @ ref int, in another case p may be x @ a. In order to abstract all these specific one-
shot functions into a common type, the permission p is existentially-quantified. The type osf a b thus describes
any function which requires a permission to execute.

Interestingly, the make value (line 6) is defined to be the identity function. Indeed, the type-checker is able to
perform the right η-expansion and re-pack the existential on the right-hand side of the arrow.

This is a particular case of a general pattern, where we encode a coercion from τ1 to τ2 by ascribing the type
τ1 → τ2 to the identity function. We show more examples of this pattern in Chapter 5.

The library also offers an operation for composing two one-shot functions into another one-shot function,
which we omit, as well as make and apply functions, for creating and applying a one-shot function respectively.

Currently, the library exposes the definition of the osf type, meaning that the type-checker can freely pack
and apply one-shot functions, without the need for make and apply. Should the osf type be abstract, however, the
user would definitely need to go through the make and apply functions exposed by the library’s interface.

4.4 Rich booleans

Thestandard library module

Data types in Mezzo are more powerful than regular data types, in the sense that a branch can hold permissions
in addition to regular fields. We leverage this for the definition of rich booleans, which we have seen already (§4.2
for instance).

When discriminating on a rich boolean (Figure 4.6), the user gains additional permissions depending on the
branch they are in. A boolean is then defined to be a rich boolean which holds the empty permission in both

56

4.4. Rich booleans

data rich_bool (p : perm) (q: perm) =

| False { | p }

| True { | q }

alias bool = rich_bool empty empty

val not : [p : perm, q : perm] (consumes rich_bool p q) -> rich_bool q p

Figure 4.6: The type of rich booleans

branches.
The negation of a rich boolean merely swaps its two type parameters. Expressing conjunction and disjunc-

tion, however, is trickier, due to the lazy semantics of the boolean operators. One might be tempted to write the
following signature for the conjunction function:

val conjunction: [q: perm, p1: perm, p2: perm]

(rich_bool q1 p1, rich_bool q2 p2) -> rich_bool (q1 ∨ q2) (p1 * p2)

That is, in essence, the meaning of the conjunction operator: it is true if both arguments are true, and is false
if either one of the arguments is false. We have no way, however, of expressing the disjunction of two permissions,
as there is no anonymous sum in Mezzo. We thus require that q1 and q2 be equal, so that q ∨ q simplifies to q.

val conjunction: [q: perm, p1: perm, p2: perm]

(rich_bool q p1, rich_bool q p2) -> rich_bool q (p1 * p2)

This function signature is now valid Mezzo, but does not correspond to what the && operator should do. In-
deed, it forces the evaluation of its second argument, while a regular && operator only evaluates the second argu-
ment whenever the first one evaluates to True.

We solve this by using the following signature for conjunction, which encodes the lazy operational semantics
of the && operator:

val conjunction : [q : perm, p1 : perm, p2 : perm, s : perm] (

consumes b1 : rich_bool q p1,

b2: (| s * consumes p1) -> rich_bool q p2

| s

) -> rich_bool q p2

One can read this signature as follows. Computing the conjunction of two permissions requires a rich boolean
b1 which holds q if False, p1 if True.

In the case that b1 is in the branch True { | p1 }, we need to evaluate the second boolean b2. To avoid strict
evaluation, wemake b2 a function. When evaluated, the function receives p1. The function returns p2 if True. The
p2 permission may subsume p1. The function may need to perform side effects; it may thus receive a permission
s.

In the case that either b1 or b2 are false, they have to return the same permission q.

Desugaring

This now leaves the question of: what do we do when confronted with a e1 && e2 expression inMezzo? We need
to ensure that type-checking is consistent with the runtime semantics of Mezzo. Indeed, since the type system
tracks effects, the type-checking rules must be consistent with the operational semantics of the language.

• We cannot translate this into a call to the first version of conjunction: it would be unsound, since the first
version of conjunction evaluates its second argument strictly. We cannot translate this into a call to the
proper version of conjunction either, because function types are annotated in Mezzo. We would need to
know, in advance, at parsing time, the correct values for q, s, p1 and p2.

57

4. Bits from the standard library

1 val _ =

2 let x = 1 in

3 let y = 2 in

4 if x == y && true then

5 assert x = y

6 else

7 ()

Figure 4.7: A program involving conjunction rejected by the type-checker

• We could special-case the type-checker for &&. This basically amounts to performing type inference for the
universally-quantified parameters of conjunction, which is challenging.

• What we do instead is translate e1 && e2 as follows:

e1 && e2 ≡ if e1 then e2 else false

This translation is correct, does not require a special-case for && in the type-checker. It poses, however, similar
inference challenges.

Inference difficulties

Anticipating on Chapter 12, here is an explanation of why inferring the right permissions for conjunctions poses
technical difficulties.

The code from Figure 4.7 is correct, and should be accepted by the type-checker. Indeed, if one removes the
&& true part at line 4, Mezzo accepts the program. The reason is that the program is desugared as follows:

1 val _ =

2 let x = 1 in

3 let y = 2 in

4 let b =

5 if x == y then

6 true

7 else

8 false

9 in

10 if b then

11 assert x = y

12 else

13 ()

This triggers a merge situation (Chapter 12) for the disjunction at lines 5-8: the type-checker is faced with:

x = y ∗ retl @ True ∨ retr @ False

Themapping is trivial, so the algorithm skips directly to the pairwisemerging step, and performs two subtractions:

x = y ∗ retl @ True− retl @ rich_bool p1 q1

and
retr @ False− retr @ rich_bool p2 q2

Both these subtractions strengthen onto

x = y ∗ retl @ True− q1 ∗ retl @ True

58

4.5. Locks and conditions, POSIX-style

1 abstract lock (p: perm)

2 fact duplicable (lock p)

3

4 abstract locked

5

6 val new: [p: perm] (| consumes p) ->

7 lock p

8

9 val acquire: [p: perm] (l: lock p) ->

10 (| p * l @ locked)

11 val try_acquire: [p: perm] (l: lock p) ->

12 rich_bool empty (p * l @ locked)

13

14 val release: [p: perm] (l: lock p | consumes (p * l @ locked)) ->

15 ()

Figure 4.8: Axiomatization of locks

and
retr @ False− p2 ∗ retr @ False

Variables p1, p2, q1 and q2 are flexible; the type-checker must find suitable instantiations for them. In order to
succeed, the type-checker would have to perform sophisticated reasoning and figure out that, out of all possible
subsets of permissions, x = y is the one it ought to pick. Indeed, in the general case, there are manymore permis-
sions available than just the two shown here! Right now, the type-checker refuses to explore all possible subsets,
and picks empty which is a valid, albeit useless solution.

4.5 Locks and conditions, POSIX-style

Locks

Locks are remarkably important in Mezzo. We saw a sample usage of locks earlier (§3.1). Since they are used
pervasively in typical Mezzo code, I show the interface for locks in Figure 4.8.

A lock is an abstract type which captures a permission (line 1). The lock is duplicable, which allows multiple
threads to compete for it.

A lock is created via the new function (line 6). The lock is initially released, meaning that the permission is
within the lock, hence the consumes p in the signature of new.

Acquiring a lock is typically done via the acquire function (line 9), which takes a lock l, blocks and returns
when the lock has been acquired. The function returns no value, only the permission pwhich was previously held
by the lock.

One can leverage the rich_bool typewe sawearlier (§4.4) to define the try_acquire function (line 11), which
is non-blocking. The function may fail to acquire the lock, hence the rich_bool return type.

Releasing a lock is done using release (line 14). One has to, again, give up the permission p protected by a
lock in order to release it.

The extra locked type (line 4) is useful in the rare case where the lock protects a duplicable permission, or an
affine permission of which there exists several copies. It ensures that the client cannot call release twice. This
type, however, serves a much more essential purpose in the definition of condition variables (Figure 4.9).

Conditions

The type of conditions (line 1) is parameterized (at kind value) over the particular lock the condition refers
to, meaning that condition is a (value-)dependent type. The lock and the corresponding condition variable are
initially tied together when a call to new takes place (line 4). The dependent type of conditions is useful in the

59

4. Bits from the standard library

1 abstract condition (l: value)

2 fact duplicable (condition l)

3

4 val new: [p : perm] (l: lock p) -> condition l

5

6 val wait: [l: value] (condition l | l @ locked) -> ()

7

8 data signal_whom =

9 | SignalOne

10 | SignalMany

11

12 val signal: [l: value] (condition l, signal_whom) -> ()

Figure 4.9: Axiomatization of conditions

1 abstract channel a

2 fact duplicable (channel a)

3

4 val new: [a] () -> channel a

5 val send_many: [a] (consumes xs: list::list a, c: channel a) -> ()

6 val receive: [a] (c: channel a) -> a

Figure 4.10: Specialized implementation of a channel (interface)

definition of wait (line 6), as it ensures that one can only wait on a condition variable if one holds the lock first,
via the l @ locked permission. This provides additional safety.

The signal function (line 12) is standard.

An example: the work queue

The final example is the textbook implementation of a work queue. It uses an object-oriented style which I detail
later on (Chapter 5). The code is divided in two parts: a specialized implementation of channels (Figure 4.11,
Figure 4.10) and a server that leverages this (Figure 4.12).

The channel Channels are a communication primitive, where the sender may write asynchronously (in a non-
blockingway)data into the channel, while the receiver extracts elements from the channel in a synchronous (block-
ing) manner. Channels are, naturally, duplicable, so as to support communication betweenmultiple threads. Fig-
ure 4.11 shows a possible implementation of a mychannel module, which offers an interface tailored for the later
server example. Figure 4.10 shows the corresponding interface.

A channel (line 3) is, internally, amutable reference to a list, alongwith a lock that protects the reference and a
corresponding condition variable. A channel is always carried around with the lock in the released state, meaning
that the permission for the queue is within the lock, thus making the whole type duplicable.

Creating a new channel is done by calling the new function (line 9). Thefirst step consists in creating the actual
queue. We use a lock to protect the queue. For readability, we define a type alias for the invariant that the lock
protects. We also create a new condition variable that will be used to signal to the receiver threads that the queue
is non-empty.

The send_many function is standard (line 16): it acquires the lock, appends the new items at the back of the
queue, and releases the lock. It then signals, to potentially many threads waiting on the condition, that new ele-
ments have been added into the queue. (If send were to take a single item, SignalOne would be sufficient).

The receive function (line 22) needs to secure a non-empty queue using the lock, so as to return an element
to the caller. Since this function is blocking, it relies on the condition variable to block properly.

60

4.5. Locks and conditions, POSIX-style

1 open list

2

3 data channel a = Channel {

4 queue:: unknown;

5 lock:: lock::lock (queue @ ref (list a));

6 condition:: condition::condition lock

7 }

8

9 val new [a] (): channel a =

10 let queue = newref nil in

11 let alias invariant: perm = queue @ ref (list a) in

12 let lock: lock::lock invariant = lock::new () in

13 let condition = condition::new lock in

14 Channel { queue; lock; condition }

15

16 val send_many [a] (consumes xs: list a, c: channel a): () =

17 lock::acquire c.lock;

18 c.queue := append (!(c.queue), xs);

19 lock::release c.lock;

20 condition::signal (c.condition, condition::SignalMany)

21

22 val receive [a] (c: channel a): a =

23 let Channel { queue; lock; condition } = c in

24 let alias invariant: perm = queue @ ref (list a) in

25 lock::acquire lock;

26 let rec loop (| lock @ lock::locked * consumes invariant):

27 (| queue @ ref (Cons { head: a; tail: list a })) =

28 match !queue with

29 | Cons ->

30 ()

31 | Nil ->

32 condition::wait condition;

33 loop ()

34 end

35 in

36 loop ();

37 let head = !queue.head in

38 queue := !queue.tail;

39 lock::release lock;

40 head

Figure 4.11: Specialized implementation of a channel

61

4. Bits from the standard library

1 open list

2

3 data work_queue a =

4 WorkQueue {

5 add: (consumes list a) -> ()

6 }

7

8 val new [a] (n: int, consumer: (consumes x: a) -> ()): work_queue a =

9 let channel: mychannel::channel a = mychannel::new () in

10

11 let add (consumes xs: list a): () =

12 mychannel::send_many (xs, channel)

13 in

14

15 let worker (): () =

16 while true do begin

17 let element = mychannel::receive channel in

18 consumer element

19 end

20 in

21

22 let workers = init (n, fun (_): _ = worker) in

23 iter (workers, thread::spawn);

24

25 WorkQueue { add }

Figure 4.12: Implementation of a server using mychannel

abstract channel a

fact duplicable (channel a)

val new: [a] () -> channel a

val send: [a] (channel a, consumes a) -> ()

val receive: [a] channel a -> a

Figure 4.13: The interface of channels

Let me describe the code in detail. After acquiring the lock, one needs to ensure that the queue is non-empty:
this is the purpose of the loop function (line 26). The pre-condition of the function is the invariant, and the post-
condition ensures that the queue has become non-empty: this is precisely what we need. We use a constructor
type for that purpose, which embodies the fact that the queue is a Cons cell.

The function has to loop. Indeed, the condition::wait function (line 33) releases the lock associated with
the condition, waits for a signal to be broadcast, then competes for the lock again. In-between the signal reception
and the lock acquisition, another thread may have emptied the queue, hence the loop.

By the time we exit the loop (line 37), we learn that the queue is non-empty. We can thus take the head of the
list, and release the lock (line 39).

Once the lock has been released, we return to the caller the element we just took out of the queue.
This example works remarkably well, and requires a relatively light amount of annotations. This is due to

the duplicable nature of locks: the lock is implicitly captured by all the functions. These functions perform well-
parenthesized calls to acquire and release, meaning that the only function which mentions the invariant in its
signature is loop, as its purpose is precisely to refine the invariant.

The interface of channels, as found in the Mezzo standard library, is shown in Figure 4.13.

62

4.6. Landin’s knot (recursion via the mutable store)

Theserver The code for the server is shown in Figure 4.12. The server, when initialized via new (line 8), spawns
multiple threads, and offers an add function (line 3) that dispatches data onto the multiple threads. This is a work
queue: items are dispatched onto worker threads.

The new function (line 8) takes an integer n, which represents the number of workers to be created, and a
consumer. Each worker, when fed a new element, will call the consumer on it. In essence, the consumer function
represents what the client wishes to do with each element.

Internally, the server relies on a channel (line 9) for the communication between the client and the worker
threads. Sending new items for processing merely amounts to sending them onto the channel (line 11).

The worker function represents one thread of execution (line 15): in this simplified example, the worker lives
forever (hence the while true loop) and repeatedly extracts items from the channel in order to process them by
calling consumer.

Once the worker function is defined, the server can spawn the multiple threads (line 23). It creates a list of
identical workers, then calls thread::spawn for each one of them.

Finally, the function returns (line 25) the work queue object that was just created.

4.6 Landin’s knot (recursion via themutable store)

This example is fairly advanced, and rather fragile, as it poses type-checking difficulties. These difficulties are
discussed in Chapter 11; §11.7 provides detailed explanations.

Let me nonetheless show this programming pattern. Because the reasons why the code type-checks are fairly
advanced, I need to anticipate on Chapter 8 and mention some subsumption rules of Mezzo. Landin’s knot (Fig-

1 data patched (r: value) a b =

2 Patched { contents : (x : a | consumes r @ patched r a b) -> b }

3

4 val fix [a, b] (ff : (a -> b) -> (a -> b)) : a -> b =

5 let r = newref () in

6

7 let f (x : a | consumes r @ patched r a b) : b =

8 let self = r.contents in

9 ff self x

10 in

11

12 r.contents <- f;

13 tag of r <- Patched;

14 f

Figure 4.14: Landin’s knot

ure 4.14) implements recursion through the mutable store by backpatching a function reference. The fix combi-
nator (line 4) allocates a reference cell at line 5; the function f assumes in advance that the reference cell has been
patched properly (line 7) and now contains a reference to f itself. At line 9, the current permission is thus:

r@ patched r a b ∗ self@ (a | consumes r@ patched r a b)→ b

By HideDuplicablePrecondition, we can obtain:

self@ a→ b

which allows the recursive call to take place.
The rest of the code needs to make sure that the yet-unfulfilled pre-condition for f is met. This is done by

performing a strong-update and writing f into the contents field of the reference (line 12) which, until now,
contained a placeholder unit value. This “ties the knot”.

The key insight is that the type patched r a b is duplicable, which enables the weakening of the function type
into a -> b. Without it, we would not be able to subtype self into a function from a to b at line 9 like we did
above.

63

4. Bits from the standard library

We thus need to freeze the reference into the immutable, hence duplicable, patched data type: this is the
purpose of the tag assignment at line 13. The last line contains, again, advanced type-checking reasoning. By
using the permission for f, we can obtain r @ patched r a b; usingHideDuplicablePrecondition again, we
obtain f @ a -> b.

4.7 Other interesting bits

F.Pottierwrote the lazy.mzmodulewhichdefines the lazy type in a library. In contrast,OCamlprovides a built-in
type. Themodule uses reified coercions to encode bounded polymorphism. Themodule relies onweak references
(protected by a lock); combined with bounded polymorphism, the lazy type can be exported as covariant. The
source code is heavily commented, should a curious reader wish to take a look. The streammodule leverages the
lazymodule.

F. Pottier andA.Guéneauworked on iterators inMezzo, while I wrote the supporting code in theMezzo type-
checker [GPP13]. Themodule uses the sameborrowing patternwedemonstrated earlier §3.2, although in amuch
more sophisticatedway. A generic library for iterators in available in the standardMezzo library as iterator.mz; it
provides the standard map, filter, zip, fold operations over iterators. Specific modules (list, mutableTreeMap)
provide iterators which implement the iterator interface.

64

5. Writing programs in
Mezzo
Thepresent chapter highlights a fewprogramming patterns thatwe discoveredwhilewritingMezzo programs. Of-
tentimes, these patterns revolve around the difficulty of type-checking programs that have a non-trivial ownership
discipline.

Several of these points appeared in the previous chapters. I discuss them more thoroughly. The discussion
anticipates over the formal presentation of the Mezzo type-checking rules. The reader may wish to come back
later to the present chapter.

5.1 Ownership and function signatures

Whenwriting a function inMezzo, onemust think about the interface the function exposes to its callers. Mezzo re-
volves around ownership: the programmer hencemust be careful. Onemay ask for a lot of guarantees; worded dif-
ferently, a functionmay requiremany permissions to execute, making it difficult to call, butmaking type-checking
its body easier. Conversely, one may write a function by demanding very little, which eases things from the caller’s
perspective, but makes type-checking the body of the function hard, because of missing assumptions.

Which style should be adopted depends very much on the nature of the function. It sometimes may be easy
to figure out which style to adopt; in some other situations, demanding the right pre-conditions can be a little
tricky. Let me illustrate these points.

Easy case: not using consumes The ideal case is when the programmer succeeds in writing a function with type
(x: t) -> u. Lacking any consumes annotations, the function preserves ownership of its argument. This behavior
is optimal from the caller’s point of view: they do not lose any permission and must only exhibit x @ t in order
to call the function.

Informally, we say that “it is better to preserve the argument”. Formally:

(x : t)→ u ≤ (consumes x : t)→ u

(This claim is hard to prove at this stage of the dissertation. Anticipating on the next chapters, let me just say
that once the types above are converted into the internal syntax, proving this subtyping relation requires a mere
application of the subsumption rule CoArrow.)

An example of such a function is list::length: the programmer can write the “best type”, so they should just
go ahead and not even bother adding a consumes annotation.

val length: [a] list a -> int

Easy case: one has to use consumes Not all functions can be written with such an optimal type. A typical
situation is, upon type-checking a function’s body, realizing that the permission for the argument is no longer

65

5. Writing programs in Mezzo

available at the end of the function body. A natural escape hatch thus consists in adding a consumes annotation
for the said argument.

Consider the following snippet, where the mlist type denotes mutable lists.

⌨ (* val rev_append: [a] (consumes xs: mlist a, consumes ys: mlist a) -> mlist a *)

val rev [a] (xs: mlist a) : mlist a =

rev_append (xs, MNil)

Could not obtain the following permission:

xs @ mlist::mlist a

Variable xs is defined around there:

File ”test.mz”, line 3, characters 13-24:

val rev [a] (xs: mlist a) : mlist a =

^^^^^^^^^^^

No useful permissions are available for it.

In the example above, the function cannot type-check since the permission for the argument xs is definitely
gone. In this case, this is inherent to the semantics of the function: one has to add the consumes keyword. Accepting
this function without the consumes keyword would be a breach of soundness. This also is an ideal case: it is clear
that the programmer must use the consumes keyword when writing the function.

In case the function consumes its argument, the caller will do its best to save a copy of the corresponding
permission, if possible.

A complex case Let us now move on to a slightly subtler situation where not using consumes is impossible, and
using consumes is unsatisfactory. I take the example of a programmer who wishes to implement the ref::get

function.

val get [a] (x: ref a): a = x.contents

The function, with such a signature, will be rejected by the type-checker. Indeed, the function duplicates
ownership of the reference’s contents. Lacking any extra assumption, the function cannot admit such a type in
Mezzo.

A solution is, per the paragraph above, to add a consumes annotation.

val get1 [a] (consumes x: ref a): a = x.contents

This gives, however, a pretty useless type to the get function, since the caller can no longer use the reference
after getting its contents. A better solution is to add an extra duplicability assumption.

val get2 [a] duplicable a => (x: ref a): a =

(* x @ ref a *)

(* x @ Ref { contents = c; } * c @ a *)

x.contents

(* x @ Ref { contents = c; } * c @ a * ret = c *)

(* x @ Ref { contents = c; } * c @ a * ret @ a * ret = c *)

(* x @ ref a * ret @ a *)

Seeing why the function is now well-typed is not trivial. The type-checker applies several reasoning steps.
The first one consists in expanding ref, a data type with one branch, into the corresponding concrete type. The
type-checker then introduce a name for the contents field, namely, c.

66

5.1. Ownership and function signatures

If ret denotes the name of the function’s return value, then ret is c; knowing that a is duplicable, the type-
checker duplicates the permission c @ a, and uses ret = c to rewrite the copy into ret @ a. The type-checker is
then able to assert both x @ ref a and ret @ a: the function is well-typed.

It seems that this function signature is excessively restrictive: indeed, at first sight, one can only get the con-
tents field of a reference if it is duplicable.

From the caller’s point of view, however, things are just fine. The type-checker applies similar transformations.

(* x @ ref (mlist int) *)

(* x @ Ref { contents = c } * c @ mlist int *)

let y = get2 x in

(* x @ Ref { contents = c } * c @ mlist int * y = x *)

...

Type-checking the call to get2 requires the type-checker to exhibit x @ ref ?a with ?a suitably chosen to be
a duplicable type. Remember that a singleton type conveys no ownership information and is thus duplicable. The
problem hence admits a solution with ?a equals to (=c).

The caller keeps x @ Ref { contents = c } but also gains y @ (=c), that is, y = c.
This non-trivial reasoning that happens in the type-checking engine is only made possible because the ref

module exposes the concrete definition of the ref type; lacking this knowledge, the type-checker would be unable
to perform the sophisticated reasoning steps shown above.

Using a singleton type to enforce proper usage There is, however, a catch: the problem of finding x @ ref ?a

with ?a duplicable admits, besides the singleton type, another solution, which is unknown, our top type. For design
reasons, the type-checker does not backtrack at the expression level. That is, the type-checker does not consider
multiple solutions for type-checking a function call and picks an arbitrary one. It turns out that, for numerous
reasons (§11.7, §12.4), the type-checker never picks a solution that involves a singleton type. This means that
even though the typing derivation described above is the “right one”, the type-checker’s inference procedure will
fail to use it.

The solution consists in rewriting the type of the get function.

val get3 [y: value] (x: ref (=y)): (=y) =

x.contents

This way, we make sure that the type-checker is forced to use a singleton type. One could wonder whether
this signature is better than that of get2. The two are equivalent. They are, however, strictly better than the initial,
bad get1 signature.

Figure 5.1 shows how one makes sure that the type-checker agrees with the informal discourse and is indeed
able to figure out that these types are equivalent. (This anticipates slightly on §5.3.) Essentially, whenever asked to
verify that the two types are equivalent, the type-checker is able to do so; it does not, however, introduce singleton
types by itself.

Discussion: which type is better? It is hard to come by with a definitive answer, and this is perhaps a weakness
of Mezzo. Right now, there are several possible ways for writing a function type; picking the best one demands
some expertise, and a good deal of thinking about what the function really means in terms of ownership. Not only
that, but it also requires the programmer to know how inference works under-the-hood.

Preserving the argument is, naturally, desirable. Not all functions are meant to preserve their arguments,
however. In that case, the consumes keyword seems inevitable, unless one can get by with a singleton type.

Whether one should use a singleton type or not requires knowledge about the type-checker. The fundamental
reason why using a singleton type with a reference works is that the type-checker applies the following coercion
transparently (Unfold,DecomposeBlock):

ref a ≡ ∃(x : value) ref (=x) ∗ x@ a

One may be tempted to write an infallible option::get with the following type:

val get: [x: value] (option (=x)) -> (=x)

67

5. Writing programs in Mezzo

val id [a] (consumes x: a): a = x

alias subtype t u: perm = id @ t -> u

alias equiv t u: perm = subtype t u * subtype u t

alias t1 =

[a] (consumes (x: ref a)) -> a

alias t2 =

[y: value] (x: ref (=y)) -> (=y)

alias t3 =

[a] duplicable a => (x: ref a) -> a

val _ =

(* t2 ≡ t3 *)

assert equiv t2 t3;

(* t3 ≤ t1 *)

assert subtype t3 t1;

(* t2 ≤ t1 *)

assert subtype t2 t1;

Figure 5.1: Using the identity to encode coercions

This, however, would fail to work, as it requires the following rule which is false, as it only holds in the Some
case.

option a ≡ ∃(x : value) option (=x) ∗ x@ a

5.2 Higher-order effects and crafting signatures

As we saw earlier, higher-order functions need to take into account effects.

The map example Let us start with the most basic signature for the map function, shown below.

val map1: [a, b] (consumes xs: list a, f: (consumes a) -> b) -> list b

Before tackling the issue of effects, let usmake sure that consumes annotations are used properly in the context
of a higher-order function.

We saw earlier that we must consume the ownership of xs, and that the caller will duplicate, if possible, the
permission. The first occurrence of consumes is thus used properly.

A subtler point is the signature of f. We favor the caller: the map function accepts the least restrictive type for
its argument. A caller can pass a stronger type for f if they wish, that is, a function that preserves its argument will
work for f.

Formally, using contravariance in the domain of arrows as well as the earlier coercion (§5.1), we can establish
that:

∀a, ∀b.(consumes list a, (consumes a)→ b)→ list b ≤ ∀a, ∀b.(consumes list a, a→ b)→ list b

This thus means that the second consumes annotation is used properly: omitting it would place a stronger
burden on the caller.

Now that we have made sure that the consumes annotations are used properly, let us take a closer look at the
signature of map1. This function type is suboptimal because f cannot perform effects. A way to improve upon the
signature of map1 is to introduce an extra permission s.

68

5.2. Higher-order effects and crafting signatures

val map2: [a, b, s: perm] (

consumes xs: list a,

f: (consumes a | s) -> b

| s

) -> list b

Let me first point out that this signature is a subtype of the former, since picking s = empty gives back map1.
This signature ismore interesting, because now f can, seemingly, performany sort of side-effects. The function

can, for instance, increment a counter. There is however one variety of side-effects that f cannot perform, which
is to modify the element in the list xs. For that, we need yet another type for map.

val map3: [a1, a2, b, s: perm] (

consumes xs: list a1,

f: (consumes (x: a1) | s) -> (b | x @ a2)

| s

) -> (list b | xs @ list a2)

This type is a subtype of map2, sowe are indeed performing refinements of the original type. This time, it looks
like we have the “best” type for map.

Quite frustratingly, there is no theoretical argument to support the claim that this is the “best type”. It is,
indeed, a subtype of the other two, but there is no meta-theoretic argument justifying that we cannot obtain a
better one.

Another source of dissatisfaction is that the type above, again, requires quite some expertise to craft. This
is the type that the standard library of Mezzo uses. We suspect, however, that only authors of libraries need to
preoccupy themselves with optimizing the types in their signatures; casual users, as long as their code works, will
probably stick to one of the less sophisticated versions.

Anticipating on subsequent sections, let us just remark that having four universal quantifications raises chal-
lenges for the type-checker. Fortunately, since function types are annotated, by comparing the formal type for f
and the effective type of the argument, the type-checker can figure out the correct values of a1, a2, b and s.

Counting function calls with types Let us now imagine that wewish towrite versions of map for references and
options. To better illustrate the point, I use immutable references.

1 We assume the type iref to have an opaque definition, meaning that we do not have (iref a) | p ≡ iref (a

| p). If the definition of iref (shown below) were transparent, the type-checker would be able to prove this fact.

data iref a = IRef { contents: a }

We wish, just like with map2, to allow the function passed as an argument to perform effects. I stay at the level
of detail of map2; that is, the function f is not expected tomodify the element stored in the container. Interestingly,
the signature of map_iref and map_option is going to be slightly different from map2.

val map_iref: [a, p: perm, s: perm] (

consumes x: iref a,

f: (consumes (a | p)) -> (b | s)

| consumes p

) -> (iref b | s)

val map_option: [a, p: perm] (

consumes x: option a,

f: (consumes (a | p)) -> b

| consumes p

) -> (option b)

69

5. Writing programs in Mezzo

These functions exhibit slight variations on the pattern in map2. The map_iref function takes f, which con-
sumes p and produces s; then, map_iref itself consumes p and produces s, unconditionally. This type reveals that,
assuming it terminates, map_iref calls its argument f exactly once.

The map_option function, however, does not promise to return any permission that fwould return: from this,
we can conclude that map_option calls its argument f at most once.

Finally, looking back at the signature of map2, the fact that map2 preserves any permission its argument f pre-
serves reveal that fmay be called an arbitrary number of times.

Sequencing function calls with types In the same vein, the signature below reveals that:

• h calls f at most once;
• h calls g only after calling f;
• if h terminates, it has called g.

Worded differently, assuming it terminates, h calls f, once, then g, once. (The functions return the unit type for
the sake of readability.)

val h: [p, q, r] (

f: (| consumes p) -> (| q),

g: (| consumes q) -> r

| consumes p

) -> (| r)

5.3 Reifying coercions

A coercion is a function from types to types, which has no run-time representation. A coercion allows one to
convert an element of type t into type u. There is no notion of first-class coercions in Mezzo; however, coercions
can be emulated.

Beware: this section uses the internal syntax which has not been introduced yet (Chapter 7).

First encoding using the identity function

This first encoding is the one we saw in Figure 5.1. The definition of the identity gives id@ ∀a.a→ a. The classic
subtyping rule for functions is as follows.

Sub-Arrow
t2 ≤ t1 u1 ≤ u2
t1 → u1 ≤ t2 → u2

If we have id@ ∀a.a → a, we can instantiate this type and obtain id@ τ → τ. If τ ≤ σ, then Sub-Arrow gives
id@ τ → σ.

Phrased differently, if τ ≤ σ is true in the system, one can obtain id@ τ → σ. We call this a coercion witness.
Having a coercion witness is strictly less powerful than a “real” coercion. Indeed, having id@ τ → σ, the

type-checker, lacking any special understanding of the id function, cannot conclude that τ ≤ σ and use this fact
accordingly.

1 Intuitively, by having id@ t→ u, one can establish⊩ x@ t ≤ x@ u, which is the definition of t ≤ u. Deriving
this relation is not, however, supported by the current Coq formalization of Mezzo.

Having this downgraded version of coercions thus requires the user to manually apply coercions via expres-
sions. In particular, the user has to write an expression to apply a coercion under a context. Take the case of lists:
if τ ≤ σ, a system with full coercions would allow one to deduce list τ ≤ list σ thanks to a variance analysis on the
list data type. With our coercion witnesses, one needs to write specific code for that purpose (Figure 5.2), as one
cannot obtain id@ list t1 → list t2 from id@ t1 → t2. Moreover, the encoding has the drawback that apply_list
does not convey the fact that the return value is the same value as the argument.

This encoding of coercions has one drawback: several permissions become available for the identity function.

70

5.3. Reifying coercions

open coercions

open list

val apply [t1, t2] (consumes x: t1 | subtype t1 t2): t2 =

id x

val rec apply_list [t1, t2] (consumes x: list t1 | subtype t1 t2): (list t2) =

match x with

| Cons -> Cons { head = apply x.head; tail = apply_list x.tail }

| Nil -> Nil

end

Figure 5.2: Manually applying a coercion

(* id @ [a] consumes a -> a *)

assert subtype t1 t2

(* id @ [a] consumes a -> a * id @ consumes t1 -> t2 *)

One cannot discard these coercion witnesses. The user provided information by asserting that t1 is a subtype
of t2; lacking this user-provided hint, the type-checker would have to decide on its own to obtain a new coercion
witness and try all possible t2’s to find out which subtyping witness works: our implementation, quite obviously,
does not perform such a massive exploration.

Keeping these witnesses has a performance impact, since the type-checker now needs to backtrack and try
every possible coercion witness when trying to justify a call to apply.

Alternative encoding using fresh functions

An alternative encoding of subtyping would be as follows.

alias subtype’ t1 t2 = [x: value] (| consumes x @ t1) -> (| x @ t2)

This encoding is more powerful than the one based on the identity function, because it preserves the identity
of the element being coerced. Just like the other encoding, one can, using subtype’ t1 t2, exhibit subtype’
(list t1) (list t2) (Figure 5.3)

alias subtype’ t1 t2 = (x: unknown | consumes x @ t1) -> (| x @ t2)

open list

val lift_list [t1, t2] (c: subtype’ t1 t2): subtype’ (list t1) (list t2) =

let rec c_list (x: unknown | consumes x @ (list t1)): (| x @ (list t2)) =

match x with

| Cons { head; tail }->

c head;

c_list tail

| Nil ->

()

end

in

c_list

Figure 5.3: Lifting a coercion on lists

71

5. Writing programs in Mezzo

The encoding chosen in Figure 5.3 is slightly different, though: we need x to be a program variable, not just
a type variable, in order to match on it. Admittedly, a ghost code mechanism would allow matching on fictional
variables; in the current state of things, though, we must add an x: unknown parameter to the function and pass it
the element to coerce.

An advantage of this encoding is that we no longer havemultiple function types attached to the same program
variables, that is, the id function. This requires the user so specify, using its name, which coercion should be
applied: this is more readable, and makes the job of the type-checker easier.

A drawback of this encoding is that we rely on coercion authors to be well-behaved and write terminating
functions that perform no side-effects.

This encodingwas used in Figure 3.11 at line 18 and line 28. One-shot functions (§4.3) also use this encoding,
except that they quantify over an arbitrary p and q instead of x @ t1 and x @ t2.

Two unsatisfactory solutions

Thisdigressionon coercions showsboth the expressive power ofMezzo and its limitations. The systemcan express
coercions, but the user has to manually apply them, possibly incurring a run-time cost for just doing nothing (the
cost of calling apply or, worse, apply_list).

One could get away with having a ghost code mechanism, and declare the apply functions to be ghost. Ap-
plications of coercions would still look like regular term applications, but wouldn’t incur a run-time penalty. This
ghost-code mechanism has been used successfully in other verification tools [Fil03]; we are not sure yet as to
whether we want to add this mechanism in Mezzo. In the meanwhile, we rely on the compiler to eliminate the
calls to apply. The calls to apply_list seem harder to get rid of.

The encoding can be made general (the id function), but has a cost in terms of exploration in the actual
type-checker, meaning the user may want to use a less powerful, more specific encoding to accommodate the
implementation constraints.

These encodings are already useful as is, as they allows us to express bounded polymorphism [CW85] in
Mezzo. The encoding of ∀[t1 ≤ t2]. t1 → u becomes, using the type aliases from Figure 5.1:

[t1] (x: t1 | subtype t1 t2) -> u

5.4 Object-oriented programming

Modeling object-oriented programming using a simpler calculus such as System F has been an active topic of
research since the end of the 80’s until the 90’s. One line of work uses bounded polymorphism and subtyping
relations to model inheritance [CW85]; subsequent refinements have been proposed, such as F-bounded poly-
morphismwhich better accounts for “self types” [CCH+89]. Another line of work tries to stay within the context
of ML type inference and uses row polymorphism [Ré89].

Mezzo currently does not have extensible records, meaning that there is no concept of row polymorphism. We
have seen, however, that subtyping witnesses could be expressed within Mezzo. Let us see how much of objects
can be encoded that way.

Encodings usingMezzo “as is”

Currently, one can program in an object-oriented style in Mezzo [GPP13] using records with functions. The
object may have some internal state; the record will thus be quantified over some abstract permission.

The pattern from Figure 5.4 demonstrates what we call the “object-oriented style”: the record has methods
(functional fields), internal state (the existentially-quantified permission), amember field (r) and a constructor (the
new function). This matches closely Cook’s description of data abstraction via procedural abstraction [Coo91].

(The counter data type will not be made abstract in the interface; the abstraction already lies within the
existentially-quantified permission.)

Therefore Mezzo can, in a way, express “objects”, that is, model procedural abstraction. There is no support,
however, for objects inour subtyping relation. Indeed, our subtyping relation is designedarounddata types, which
are central in an ML-inspired language, and is not particularly well suited for performing subtyping operations in
the object-oriented sense.

72

5.4. Object-oriented programming

data counter = { state: perm }

Counter {

incr: (| state) -> ();

get: (| state) -> int

| state

}

val new (): counter =

let r = newref 0 in

let alias state: perm = r @ ref int in

let incr (| state): () =

incr r

in

let get (| state): int =

!r

in

Counter { incr; get }

Figure 5.4: An object-oriented encoding of a counter

The following subtyping operations would be needed for encoding a “width-subtyping” relation suited to
objects:

• shrinking a record by removing fields from the end;

• transparently changing an immutable record into another one as long as the tagsmatch and the typesmatch.

These two informal points above could be expressed via the following subtyping rules:

Sub-Shrink

x@ A {⃗f : t⃗; f⃗′ : t⃗′} ≤ x@ A {⃗f : t⃗}

Sub-Tag-Imm
A and B are the same integer

x@ A {⃗f : t⃗} ≤ x@ B {⃗f : t⃗}

With these two rules, one could define a subtype of counter, say, decr_counter, with an extra decr method.
The system would then be able to upcast automatically into counter whenever needed.

decr_counter ≤

DecrCounter { ≤ DecrCounter { ≤ Counter {

incr: (| state) -> (); incr: (| state) -> (); incr: (| state) -> ();

get: (| state) -> int; get: (| state) -> int; get: (| state) -> int;

decr: (| state) -> ();

} } }

≤ counter

The two rules are compatible with the run-time model of Mezzo. Sub-Shrink, however, must not perform
at run-time a shrinking of a GC block, even though the operation is supported by the OCaml runtime system.
Indeed, the object may be duplicable, meaning that theremay be other aliases to it; it would be unsound to shrink
the corresponding memory block. (In any case, a subtyping operation should not translate into a run-time oper-
ation!) A potential drawback of Sub-Shrink, which may explain why we haven’t added the rule to the language,
is that it creates potential memory leaks. Indeed, the user may not be aware of the extra field, meaning that they
may inadvertently keep alive references they are not aware of.

The encoding is still fairly cumbersome, and many built-in mechanisms that make object-oriented program-
ming practical are missing. There are no visibility modifiers for fields; there are no facilities for subclassing an
existing class definition and having default implementations for methods. In short, Mezzo can model procedural
abstraction, but lacks support for proper subtyping and inheritance mechanisms.

73

5. Writing programs in Mezzo

Comparison with row polymorphism and F-bounded quantification

In OCaml, row polymorphism is used primarily for inferring object types, since row variables are a natural fit for
working with a Damas-Milner style unification algorithm. Moreover, they also work naturally in the presence of
“self types” and inheritance.

An earlier alternative to row polymorphism appeared in the literature, namely, bounded polymorphism and
later variants, such as F-bounded polymorphism. SinceMezzo can express subtyping (as we saw in the preceding
sections), let us see how far Mezzo can go, using explicit annotations on function types and subtyping witnesses.

A problem discussed extensively inMitchell et al.’s ’89 paper [CCH+89] is that of self types. Self types appear
when the type of an object references itself. The first example from the paper is as follows, where the “self type”
appears in covariant position.

Movable = Rec mv. { move: Real × Real → mv }

In OCaml, this would be expressed as follows.

type movable = < move: float * float -> ’a > as ’a

The challenge in the paper is to type-check a translate function, and infer the proper type for the function.
In OCaml:

let translate x = x # move (1.0, 1.0);;

val translate : < move : float * float -> ’a; .. > -> ’a = <fun>

The important thing to notice here is that the translate function takes an argument of type ’a and returns
a result with the exact same type ’a: this is the technical difficulty that the paper describes. Using row polymor-
phism, the function type is correctly inferred.

Regular bounded quantification, however, fails to express this pattern properly, as it assigns the following type
to translate:

translate = fun (x: Movable) x.move(1.0, 1.0)

translate: ∀r ⊆ Movable. r → Movable

The paper’s F-bounded quantification succeeds in inferring the right type, however:

translate = fun (x: Movable) x.move(1.0, 1.0)

translate: ∀r ⊆ F-Movable(r). r → r

Let us see now how Mezzo fares on this example. In Mezzo, writing translate is trickier. We need to slightly
tweak our earlier encoding of subtypes for this to work (Figure 5.5).

Mezzo succeeds in type-checking translate with an expressive enough type. It may thus seem that Mezzo
has the expressive power of F-bounded polymorphism; however, the second example from the paper seems im-
possible to express inMezzo. It thus looks likeMezzo stands in-between bounded polymorphism and F-bounded
polymorphism.

These encodings are cumbersome and we do not expect users to write such code; it remains important, how-
ever, to explore the expressive power of the language.

ObjectiveMezzo?

Instead of wondering what can be added to Mezzo to make it more object-oriented friendly, we can instead ask:
whatwould the language look like if we had chosen to design anOO-like language instead of anML-like language?

Indeed, we believe several of the key Mezzo mechanisms to be reusable in an object-oriented setting:

• the entire permission framework;

• the notion of duplicable vs. affine objects;

• the “fact” mechanism;

• the adoption/abandon mechanism.

74

5.4. Object-oriented programming

(* A object of class [c] which has been coerced to its interface [movable] *)

data movable c =

Movable { move: (int, int) -> c }

(* A type [c], also a subtype of [movable]. *)

alias sub c = (c | subtype c (movable c))

(* Example 3.2 from the paper *)

val translate [c] (consumes x: sub c): sub c =

if true then

x

else begin

(* Apply the coercion *)

let x = apply x in

x.move (1, 2)

end

Figure 5.5: Encoding Mitchell et al.’s movable example in Mezzo

The central feature of Mezzo, data types, would probably be traded for a class-based mechanism that features
inheritance, visibility modifiers, and possibly interfaces. The compilation model may require switching to a run-
time environment that it better suited to objects, such as the JVM or CLR.

This is purely speculative, but may constitute a good research topic should anyone want to explore this direc-
tion.

75

Part III

Mezzo,
formalized

6 AMezzo reference

6.1 Differences with the informal presentation . 79

6.2 Meta-variables . 80

6.3 Types and kinds . 80

6.4 Type definitions . 81

6.5 Modes and facts . 82

6.6 Programs . 83

6.7 Module layer . 85

7 TranslatingMezzo to SimpleMezzo

7.1 Examples . 88

7.2 Kind-checking . 90

7.3 Translation . 95

8 Type-checking SimpleMezzo

8.1 Memory model . 99

8.2 Subsumption rules . 101

8.3 Type-checking rules . 103

8.4 The duplicable and exclusive modes . 108

8.5 Facts . 112

8.6 Variance . 116

8.7 Signature ascription . 117

8.8 Differences between Simple Mezzo and Core Mezzo . 118

8.9 Reflecting on the design of Mezzo . 120

This part presents Mezzo in a formal way.
The first chapter (Chapter 6) provides a reference of the Mezzo language as exposed to the
user. All the constructs of the language are listed alongwith a brief explanation. This should
hopefully help the reader write programs and understand what is legal Mezzo and what is
not.
The user-facing syntax of Mezzo provides several syntactic facilities that ease writing pro-
grams; when reasoning, however, it is easier if these syntactic facilities have been elimi-
nated. We thus define in Chapter 7 a variant of Mezzo called Simple Mezzo which features
none of the syntactic facilities.
This allows us to write the various rules that govern the type-checking of Mezzo in Chap-
ter 8. We detail the procedures for kind-checking, type-checking, as well as other side
checks such as fact inference and variance computations.

6. AMezzo reference
The present chapter aims at providing a complete reference of the user syntax of Mezzo. Since such a reference
does not exist elsewhere, the present dissertation seems like a natural fit.

This chapter hopefully should make it apparent that we devoted a lot of effort into providing constructs that
make Mezzo a usable language. We do not claim that a novice programmer can jump in and program in Mezzo–
we are far from that goal. Yet, many of the constructs presented below have been added into the language with
the sole goal of making it easier to program in Mezzo. Features such as type aliases, record “punning”, optional
permissions nested in data type branches, or the special syntax for function types (Chapter 7) bring absolutely
nothing from a theoretical point of view. Indeed, all the formal reasoning is done over a core calculus that features
none of these constructs. Yet, we believe that many, if not all of the examples we have seen before, would have
been impossible to write in the core calculus, as they would have been too verbose.

This is not a rigorous reference, in the sense that I do not list all the syntactic categories that the parser uses
(there are too many of them). Also, the notation is “informal BNF”. I write b⃗ for a possibly-empty list of b, b?

for an optional b, and b+ for a non-empty list of b.
The curious reader can consult parsing/grammar.mly and parsing/SurfaceSyntax.ml in the source code of

Mezzo; the former contains the grammar for the language, while the latter contains data type definitions which
pretty much match the syntactic categories below.

6.1 Differences with the informal presentation

This chapter marks the beginning of a more formal presentation of Mezzo, and covers in an exhaustive manner
the user-facing language, that is, the set of programs that the user can write.

The previous part may have elided some implementation details: this chapter makes some features apparent,
while the previous part left them “under the hood”. This chapter also starts referencing some files from theMezzo
prototype: indeed, things described fromnowon correspond faithfully towhat I implemented in theMezzo type-
checker during my PhD.

The two points that were not made explicit during the informal presentation revolve around modes.

Modes Modes have been pretty much kept out of the discussion. Indeed, we only mentioned duplicable and
affine permissions, saying that “the system” knew how to decide whether a permission was duplicable or
not. At some point, a new mode appeared (§4.1), the exclusive mode. It turns out that there are three
such modes in the system: affine, duplicable and exclusive. The duplicable mode is familiar already.
The exclusive mode denotes a memory block in the heap that we have unique ownership of. (Currently,
the only such blocks are mutable blocks: any nominal or structural permission for a data type marked as
mutable is, in fact, exclusive.) The affine mode is a strict superset of the two: some types, such as list
(ref int) are neither duplicable or exclusive. The fact that only duplicable permissions may be copied
remains true.

Mode constraints While the programmer can think of x @ t and duplicable a as both being permissions, it
turns out that a differentmechanism is used for the latter. In fact, duplicable a is not treated as a permission
but as a mode constraint, whose satisfiability depends on an underlying lattice of known facts. This part
makes the distinction apparent.

79

6. A Mezzo reference

6.2 Meta-variables

I use meta-variables in this chapter. Their names hint at a specific kind.

• k stands for a kind
• a, b stand for type variables at kind type

• x, y stand for type variables at kind value or program variables
• X, Y stand for type variables at any kind
• t, u stand for types at kind type

• p, q stand for types at kind perm

• T, U stand for types at any kind
• A, C, D stand for data constructors
• e stands for an expression
• m stands for a mode

6.3 Types and kinds

Types are classified using kinds.

Ki
nd

.m
l

k ::= ...

• type the kind of regular types,
• perm the kind of permissions,
• value the kind of program variables.

One may bind a type variable at a specific kind.

B ::= ...

• X: k annotated type binding,
• a unannotated type binding (default kind is type)

Here is the exhaustive list of all type constructs the user may write in Mezzo.

Su
rf
ac
eS

yn
ta
x.

ml
:1
40

t ::= ...

• X reference to a type variable
• [B] T universal binding; kind depends on T; mode depends on T

• {B} T existential binding (same as above)
• unknown the top type at kind type; conveys no ownership information (duplicable)
• dynamic allows to test for ownership; has kind type; conveys no ownership information (du-

plicable)
• A { f⃗: t ⃗ } , C , or D { f⃗: t ⃗ | p } structural (also referred to as “constructor”) type; has

kind type; conveys ownership (duplicable or exclusive) of the block; conveys ownership of
the fields according to their types t⃗; p is a permission packaged along with the constructor;
the last two forms are sugar for C {} and D { f⃗: t ⃗ } | p respectively

80

6.4. Type definitions

• (t ⃗) tuple type with at least two fields, () tuple type with zero fields, i.e. unit type; has kind
type; conveys duplicable ownership of the block which holds the tuple; conveys ownership
of the fields according to their types t ⃗

• =x singleton type; has kind type; conveys no ownership information (duplicable)
• T U ⃗ type application; has kind type or perm depending on the definition of t; ownership

information depending on the known fact for T
• t -> u arrow type; has kind type; always duplicable
• empty the top type at kind perm (we have no “polymorphic” top type in Mezzo, so we have

two separate top types for kinds type and perm); conveys no ownership information (dupli-
cable)

• x @ t anchored permission; has kind perm; ownership information depends on t

• p * q conjunction of permissions; has kind perm; ownership information depends on p and
q

• t | p type / permission conjunction; has kind type; ownership information depends on t

and p

• t | m X mode constraint / type conjunction; kind depends on T; ownership information
depends on T

• m X => t -> u mode implication; syntactic sugar for (t | m X) -> u, hence always dupli-
cable

• x: t , name introduction; kind is type; ownership information depends on t; this binding
introduces a new name with special scoping rules (Chapter 7)

• consumes T , consumes annotation; has kind type or perm depending on T; this construct has
a special interpretation (Chapter 7)

6.4 Type definitions

type definition

fact?

A type definition is followed by an optional fact. A type definition is either a data type definition, an alias
definition, or an abstract type definition.

Data type definitions are frequently used in Mezzo, as we saw through the various examples. SurfaceSyntax.ml:187

data mutable? d B ⃗ =
branch+

adopts?

and …

• d is the name of the data type being defined

• B ⃗ is a possibly empty list of type bindings (the data type’s parameters); each binding may be
precededby + (respectively - , =) to assert that the type is covariant (respectively invariant,
bivariant) in this parameter

• branch+ is a non-empty list of branches optionally preceded by, and separated by |

• branch is a data type branch; any combination of the following is admissible for a data type
branch: quantified types, type / permission conjunction, name introduction, as long as they
wrap around a constructor type. For instance, (x: A { ... }), { a } B { ... }, (A { ...

} | ...), are all valid branches. SurfaceSyntax.ml:241

• adopts? is an optional adopts clause, that is, either adopts t or nothing.

81

6. A Mezzo reference

Valid data type definitions have been shown over the previous chapters (Figure 5.4, Figure 3.8, Figure 3.9, Fig-
ure 3.14).

Simultaneous definitions of data types are recursive by default. There is no nonrec keyword.
While the surface syntax allows for complexbranch types, the formalization (Chapter 8) assumes that branches

of data type definitions are plain concrete types of the form A {. . .}. Handling more complex branch types adds
no theoretical difficulty; the implementation ofMezzo uses a set of helpers to find the constructorA of a data type
branch.

To simplify the code, one may define type aliases. These aliases are expanded eagerly; hence, they cannot be
recursive. This means that they add no theoretical difficulty as, unlike in OCaml, they do not bring equirecursive
types into the language. They receive no special treatment in the formalization and we assume them to be trans-
parently expanded by the type-checker. Type aliases will therefore not be mentioned unless they receive some
special treatment (such as variance or fact computation).

alias d B ⃗ ret? =

T

• d is the name of the alias being defined;

• B ⃗ is a possibly empty list of variance-annotated type bindings;
• ret? is an optional return kind annotation, that is, either : k or nothing – the default for k

is type;
• T is the definition of the alias, that is, any possible type.

Alias definitions have appeared previously (Figure 3.11, Figure 5.1). We also allow the user to write axioms using
abstract type definitions.

abstract d B ⃗ ret?
• d is the name of the abstract type being defined;

• B ⃗ is a possibly empty list of variance-annotated type bindings;
• ret? is an optional return kind annotation, that is, either : k or nothing – the default for k

is type;

Abstract definitions have appeared previously (Figure 4.1, Figure 4.8, Figure 4.9).

6.5 Modes and facts

We saw several examples of modes and facts throughout the examples. There are three modes.

Mo
de
.m
l

m ::= ...

• duplicable

• exclusive

• affine

Facts build onmodes to reveal information about the duplicability of abstract types; they can also be used to assert
that a concrete definition (data or alias) verifies the intended fact.

Fa
ct
.m
l

fact h ⃗ => c

• h ⃗ is a possibly empty list of hypotheses separated by =>

82

6.6. Programs

• h is a fact hypothesis of the form m Xwhere X is one of the type’s parameters, that is, X is one
of the variables from B ⃗

• c is a fact conclusion of the form d B ⃗, that is, the type applied to all its formal arguments.

An example of a fact can be found in the signature of our mychannelmodule (Figure 4.10):

abstract channel a

fact duplicable (channel a)

The mode is implicitly quantified over the formal parameters of the type it refers to. That is, the mode above
is to be understood as “∀a, duplicable channel a”. If the type of lists were abstract, it would enjoy a more complex
fact:

abstract list a

fact duplicable a => duplicable (list a)

Again, this should be understood as “∀a, duplicable a⇒ duplicable list a”.
Facts have appeared previously (Figure 4.8, Figure 4.9).

6.6 Programs

Programs are written using expressions. SurfaceSyntax.ml:283

e ::= ...

• e: t type annotation; in theory, this is equivalent to let x = e in assert x @ t; x; how-
ever, in the implementation, the type annotation t is propagated downwards to help inference

• x reference to a variable
• let p� = e� and … and p� = e� in e possibly multiple, nonrecursive value definitions;

• fun [X⃗: k ⃗] t: u = e anonymous function; return kinds k ⃗ are optional; t is interpreted as
a pattern (Chapter 7)

• let rec? f� [X ⃗: k ⃗] t�: u� = e� and … and f� [X ⃗: k ⃗] t�: u� = e� in e possiblymul-
tiple, possibly recursive function definitions¹

• let flex B in e flexible variable introduction with optional kind annotation
• let type_definition in e local type definition (anything other than an alias definition

should be considered experimental)
• x.f <- e field assignment
• tag of e <- A tag assignment
• e.f field reference
• assert p assertion
• pack {X: k} p witness t pack a permission using an existential with the providedwitness;

alternatively, pack T U ⃗ witness t is allowed as long as T U ⃗ is an alias definition that expands
to the first form;

• e� e� function application
• e [T�, …, T�] type application
• e [X=T] if e is a polymorphic type with multiple variables, just instantiate the one named X

• match e with p ⃗ -> e ⃗ pattern-matching
• (e�, …, e�) tuple construction (n ̸= 1)

• A { f ⃗ = e ⃗; | p } , C constructor expression

¹ Unlike OCaml, recursive value definitions are not allowed; these can be attained using progressive initialization.

83

6. A Mezzo reference

• if e� then e� else e� conditional
• preserving p while e� do e� while loop
• preserving p for x = e� to/downto/below/above e� do e for loop
• e�; e� sequence
• i integer constant
• give e� to e� give ownership
• take e� from e� take ownership
• e� adopts e� test ownership
• fail run-time failure
• builtin f reference to a primitive function f, i.e. not implemented inMezzo, to be provided

by the runtime environment

Not all these expressions are taken into account in the formalization; for instance, simultaneous let-bindings
are a syntactic convenience. They do not bring in extra theoretical difficulties; I’d rather not clutter the already-
fairly-dense typing rules with provisions for let ... and bindings. Local type definitions are very experimental,
and they are currently only used to define type aliases over type variables in scope. Binding flexible variables
is a mere convenience and is not worth formalizing. Packing is also remarkably standard and is not formalized
either. The semantics of our labeled type applications are dubious, so I’d rather not try to formalize them. Loops
are desugared into recursive functions; I spare these boring transformations to the reader. Integers are actually
axiomatized using:

abstract int

fact duplicable int

The parser parses integers, and the type-checker assigns the axiomatized int type to integer constants.
Aword about the semantics of type annotations. Type annotationsmayweaken the current set of permissions.

Consider, for instance, the example below, which involves mutable (uniquely-owned) lists.

val _ =

let x = MNil in

(* x @ MNil *)

assert x @ mlist int

(* x @ mlist int *)

The permission x @ MNil has been lost. The same goes for type annotations on expressions.
Aword about fieldnameoverload. Mezzo, unlike classicOCaml, allows touse the samefieldname formultiple

data types, without any restrictions. Anticipating slightly on Chapter 8, the rules involving field names (Read,
Write) demand structural permissions, meaning that the type-checker can easily resolve the field access x.f by
examining the permission available for x.

Mezzo also offers pattern-matching. Unlike OCaml, we do not offer or-patterns, that is, nested disjunctions.
This would be hard to type-check because it would incur other instances of the merge problem (Chapter 12).

Su
rf
ac
eS

yn
ta
x.

ml
:2
62

p ::= ...

• x binding pattern
• (p�, …, p�) tuple pattern (n ̸= 1)

• A { f⃗ = p ⃗ } , C constructor pattern
• p: t type-annotated pattern
• p as x conjunction pattern
• _ wildcard

We also offer some syntactic sugar related to constructor types.

84

6.7. Module layer

• In patterns, types and expressions, A { …; f; … } is understood to be A { …; f = f; … } .

• In types, A { …; f:: t; … } is expanded to { f: value } A { …; f: (=f | f @ t); … }

• In types, A { …; f, f’: t; … } is expanded to A { …; f: t; f’: t; … } (also works with ::).

6.7 Module layer

Implementations

Implementationsmay contain any sequenceof typedefinitions or value definitions v. Implementations arewritten
in files with the extension .mz.

v ::= ...

• val p� = e� and … and p� = e� in e possiblymultiple, nonrecursive toplevel value defini-
tions;

• val rec? f� [X ⃗: k ⃗] t�: u� = e� and … and f� [X ⃗: k ⃗] t�: u� = e� in e possiblymul-
tiple, possibly recursive toplevel function definitions

Modules

Mezzo provides a primitive module system.

• The implementation for module m is to be written in m.mz

• If one wants to use the definitions from m.mz from another file, one must write an interface, in m.mzi

• The user may then use qualified references to the definitions exported by module m.

– m::x is a qualified reference to the value x
– m::T is a qualified reference to the type T
– m::A is a qualified reference to the data constructor A

When type-checking a file m.mz, Mezzo first type-checks the implementation. Then, the compiler checks if
m.mzi is found in the same directory. Should an interface for m be found,Mezzo checks the implementation against
the interface. Driver.ml:255

When type-checking a module n, Mezzo first collects the references to external modules present in n. Mezzo
then parses the interfaces only, and trusts that the interfaces are correct.

It is thus up to the user’s build system tomake sure that all modules which n refers to have been type-checked
first.

Interfaces

Interfaces may contain any sequence of type definitions or value signatures s.

s ::=

val x: t

Auto-loadedmodules

Mezzo automatically loads the modules located in the corelib/ directory of the distribution. These contain the
basic definitions: integers, booleans, references…

85

7. TranslatingMezzo
to SimpleMezzo
The examples that we discussed so far are validMezzo code, expressed in the surface syntax. Themultiple conven-
tions related to ownership (the consumes keyword) as well as name binding (the x: t construct) make it difficult,
however, to formally reason about the semantics of the language. The type-checker of Mezzo thus translates the
surface syntax (Mezzo) into its own internal language, which I dub SimpleMezzo. The internal language has none
of the fancy features.

This dissertation hence faithfully describes what is currently implemented in the type-checker. Other related
publications [BPP14a], including a to-be-submitted paper journal, deal with an even simpler language calledCore
Mezzo. This language is used to perform the proof of soundness and is not covered in this dissertation; §8.8 at the
end of the next chapter lists the differences between Simple Mezzo and Core Mezzo.

We believe that the conventions related to ownership facilitate writing programs in Mezzo, and that many of
the earlier examples would be much more heavyweight if not for the consumes keyword as well as the syntactic
puns over name binding.

Simple Mezzo has a lot in common with Mezzo. Differences lie within the name introductions, of the form
x: t, and the consumes keywords. These two constructs are removed when switching to Simple Mezzo. Name
introductions are removed, along with the special scoping rules, and give way to regular ∀ and ∃ binders with
traditional scoping rules. Function types also change: indeed, the surface arrow (-> in concrete syntax,⇝ inmath
font) assumes its argument to be preserved, save for the parts which are marked with the consumes keyword. We
do not wish to deal with this unusual convention when formalizing the language, and thus rewrite these external
arrows into regular, internal arrows (→ in math font) that always consume their argument.

One important point to note is that, in this formal presentation, wedonot introduceMezzo andSimpleMezzo
as separate languages. Rather, we work within the union of the two languages:

• initially, we start with types that live in the Mezzo subset;

• a first translation pass removes the name introductions, thus sending the types in a smaller subset ofMezzo;

• a second translation pass removes the consumes annotation and translates⇝ into→ in one go, thus pro-
ducing a type that belongs to the Simple Mezzo subset.

Having one common language greatly simplifies the presentation of kind-checking rules, as they operate on the
union of the two languages. This allows us to claim that types remain well-kinded throughout the two translation
phases.

As things get more formal, the typesetting changes. This chapter uses a math font except when showing code
snippets. This means that [x: k] t becomes ∀(x : κ) t, that { x: k } t becomes ∃(x : κ) t, and that t -> u

becomes t⇝ u. The complete syntax appears in Figure 7.1.
This chapter tries to remain in sync with the conventions from the previous chapter: t hints at a type at kind

typewhileT hints at a type at kind perm or type. Since the presentation of types does not need to remain stable by
substitution, I take the liberty of writing X whenever we know that only a type variable may occur.

87

7. Translating Mezzo to Simple Mezzo

κ ::= type | value | perm | κ→ κ kind

T, t, p ::= type or permission
X variable (a, x, . . .)
(⃗t) tuple type
A {⃗f : t⃗} adopts t constructor type
X T⃗ n-ary type application
∀(X : κ) T universal quantification
∃(X : κ) T existential quantification
=x singleton type
(t | p) type/permission conjunction
(t | mX) mode constraint/type conjunction
dynamic dynamic permission
unknown top type
x@ t atomic permission
empty empty permission
p ∗ q permission conjunction

Only in Simple Mezzo :
t→ u function type (internal syntax)

Only in Mezzo :
x : t name introduction
consumes T consumes annotation
t⇝ u function type (surface syntax)

Figure 7.1: Syntax of types in Mezzo and Simple Mezzo

7.1 Examples

Let us consider the following type, which is a simplified version of the type of find (§3.2, Figure 3.11).

[a] (consumes xs: list a) -> (x: a, wand (x @ a) (xs @ list a))

Thename introduction construct xs: list a binds the variable xs. The scope of xs encompasses the domain
and codomain of this function type. There is, in fact, a free occurrence of xs in the codomain: xs occurs free in
the permission xs @ list a.

The codomain of this function type is a pair (..., ...). The left-hand component of this pair is another
name introduction construct x: a. The scope of x is the whole pair. There is, in fact, a free occurrence of x in the
right-hand component of the pair: x occurs free in the permission x @ a.

One way of explaining the meaning of these name introduction constructs, and of making it clear where the
names xs and x are bound, is to translate away the name introductions. In this example, this can be done as follows.
This type is equivalent to the previous formulation, and is also valid surface syntax:

[a] [xs : value] (consumes (=xs | xs @ list a)) ->

{x : value} ((=x | x @ a), wand (x @ a) (xs @ list a))

The name xs is now universally quantified (at kind value) above the function type. Thus, its scope encom-
passes the domain and codomain of the function type. The name x is existentially quantified (also at kind value)
above the codomain. Thus, its scope is the codomain.

The name introduction xs: list a is now replaced with (=xs | xs @ list a). This is a conjunction of a
(singleton) type and a permission. Thismeans that the function find expects a value (which is passed at runtime)
and a permission (which exists only at type-checking time). Although placing a singleton type in the domain of a
function type may seem absurdly restrictive, the universal quantification on xs saves the day. By instantiating xs

with ys, one finds that, for any value ys, the call find ys is well-typed, provided the caller is able to provide the
permission ys @ list a. Similarly, the name introduction x: a is replaced with (=x | x @ a).

88

7.1. Examples

The encoding of dependent products and dependent sums in terms of quantification and singleton types is
standard. It is worth noting that our name introduction form is more expressive than traditional dependent prod-
ucts and sums, as it does not have a left-to-right bias. For instance, in the type (x: t, y: u), both of the vari-
ables x and y are in scope in both of the types t and u. If taken in isolation, this type would be translated as
∃(x, y : value).((=x | x@ t), (=y | y@ u)).

The function type we mentioned earlier can thus be easily translated into the internal syntax:

∀(a : type)∀(xs : value)(=xs | xs@ list a)→ ∃(x : value)((=x | x@ a),wand (x@ a) (xs@ list a))

In this example, because the argument is entirely consumed, the translation is trivial. All we have to do is erase
the consumes keyword. In the core syntax, by convention, the plain arrow→ denotes a function that consumes
its argument, so this type has the desired meaning.

The translation of consumes is slightly more complex when only part of the argument is consumed: e.g., when
the argument is a pair, one component of which is marked with the keyword consumes. Consider, for instance, the
type of a function that merges two sets, updating its first argument and destroying its second argument:

val merge: [a] (set a, consumes set a) -> ()

The domain of this function type is a pair, whose second component is marked with the keyword consumes.
We translate this into the core syntax by introducing a name, say x, for this pair, and by writing explicit pre- and
postconditions that refer to x:

∀(a : type)∀(x : value)(=x | x@ (set a, set a))→ (() | x@ (set a, unknown))

Informally, the caller regains thepermission for the argument, except for theparts thatweremarkedwith consumes.
Thus, in order for the call merge (s1, s2) to be accepted, the callermust provide proof that s1 and s2 are valid

sets; but, after the call, only s1 is known to still be a set. Here is how Mezzo type-checks a call to merge:

1 let x = y, z in

2 (* x @ (=y, =z) * y @ set a * z @ set a *)

3 (* x @ (=y, =z) * x @ (set a, set a) *)

4 merge x;

5 (* x @ (=y, =z) * x @ (set a, unknown) *)

6 (* x @ (=y, =z) * x @ (=y’, =z’) * y’ @ set a * z’ @ unknown *)

7 (* x @ (=y, =z) * x @ (=y’, =z’) * y = y’ * z = z’ * y’ @ set a * z’ @ unknown *)

8 (* x @ (=y, =z) * y @ set a * z @ unknown *)

After defining x to be the pair (y, z) at line 1, the type-checker introduces the expanded permission from line
2. Seeing that the call to merge demands x@ (set a, set a), the type-checker seeks to obtain that permission; the
permission x@ (=y, =z), however, is duplicable and kept alongside by the type-checker (line 3). After the call to
merge, a new permission is obtained (line 5). This permission is expanded as well (line 6). The type-checker then
applies the UnifyTuple subsumption rule (line 7):

x@ ((=y, =z)) ∗ x@ ((=y′, =z′))⇒ x@ (=y, =z) ∗ y = y′ ∗ z = z′

This means that the final permission (line 8) is the one we expected. We have y@ set a after the call, which is
precisely what we expected.

1 The signature of merge does not convey the fact that the identity of the tuple is kept, that is, that the first element
of the tuple remains the same. Indeed, one may expect merge to have the following type, so as to preserve the
permission for y, from the caller’s point of view.

∀(a : type)∀(x, y : value)(=x | x@ (=y, set a) ∗ y@ set a)→ (() | x@ (=y, unknown) ∗ y@ set a)

Fortunately, thanks to UnifyTuple, the equation y = y′ appears and guarantees that the permission y@ set a
is preserved.

The same mechanism is applied for immutable structural permissions. In the case of a mutable structural
permission, however, the caller will be unable to preserve the structural permission, because it is affine. This means
that, unless the author of the function uses a singleton type, the identity is “lost”.

89

7. Translating Mezzo to Simple Mezzo

names(x : t) = (x, value)
⊎

names(t) (Name introduction)
names(⃗t) =

⊎
names(⃗t) (Tuple type)

names(A {⃗f : t⃗} adopts u) =
⊎

names(⃗t) (Constructor type)
names(t | mX) = names(t) (Mode constraint/permission conjunction)
names(t | p) = names(t) (Type/permission conjunction)
names(consumes t) = names(t) (Consumes annotation)
names(x@ t) = names(t) (Atomic permission)
names(p ∗ q) = names(p)

⊎
names(q) (Permission conjunction)

names(t) = empty (Any other type)

Figure 7.2: Name collection function

K-OpenNewScope
Γ; names(t)/c ⊢ t : κ

Γ/c ⊢ #t : κ

Figure 7.3: Types and permissions: well-kindedness (auxiliary judgement)

val f1 [a] (Ref { contents: a }): () =

()

val f2 [a, contents: value] (Ref { contents } | contents @ a): () =

()

val test [a] (y: a): () =

let x = Ref { contents = y } in

f2 x;

assert y @ a

(* works, identity is preserved *)

f1 x;

assert y @ a

(* fails, y @ a is gone, in favor of “x.contents @ a” *)

7.2 Kind-checking

Notations

In order to keep the kind-checking (and soon to follow, in Chapter 8, type-checking) rules concise, I use a vector
notation. For instance, in K-Tuple, the premise signifies that there is a sequence of hypotheses, for each element
in the vector.

Checking types for proper scoping

The well-kindedness judgement checks (among other things) that every name is properly bound. Thus, in a
slightly indirect way, it defines the scope of every name. In addition to the universal and existential quantifiers,
which are perfectly standard, Mezzo offers the name introduction construct x : t, which is non-standard, since
x is in scope not just in the type t, but also “higher up”, so to speak. For instance, in the type (x1 : t1, x2 : t2),
both x1 and x2 are in scope in both t1 and t2. In order to reflect this convention, in the well-kindedness rules, one
must at certain well-defined points go down and collect the names that are introduced by some name introduction
form, so as to extend the environment with assumptions about these names.

Ki
nd
Ch
ec

k.
ml

:5
35 The auxiliary function names(T), which collects the names introduced by the type T, is defined in Figure 7.2.

In short, it descends into tuples and constructors, looking for name introduction forms, and collects the names

90

7.2. Kind-checking

K-Var
(x, κ) ∈ Γ
Γ/c ⊢ x : κ

K-Unknown
Γ/c ⊢ unknown : type

K-Sing
Γ/c ⊢ x : value

Γ/c ⊢ =x : type

K-InternalArrow
Γ/• ⊢ t1 : type Γ/• ⊢ t2 : type

Γ/• ⊢ t1 → t2 : type

K-Bar
Γ/c ⊢ t : type Γ/c ⊢ #p : perm

Γ/c ⊢ (t | p) : type

K-Tuple
Γ/c ⊢ t⃗ : type

Γ/c ⊢ (⃗t) : type

K-Concrete
Γ/c ⊢ t⃗ : type Γ/c ⊢ #u : type

u is exclusive

Γ/c ⊢ A {⃗f : t⃗} adopts u : type

K-Atomic
Γ ⊢ x : value Γ/• ⊢ t : type

Γ/c ⊢ x@ t : perm

K-Empty
Γ/c ⊢ empty : perm

K-Conjunction
Γ/c ⊢ p : perm Γ/c ⊢ q : perm

Γ/c ⊢ p ∗ q : perm

K-Quantifier
Γ; (x, κ′)/• ⊢ #T : κ
Γ/c ⊢ ∀(x : κ′) T : κ
Γ/c ⊢ ∃(x : κ′) T : κ

K-ExternalArrow
Γ; names(t1)/◦ ⊢ t1 : type
Γ; names(t1)/• ⊢ #t2 : type

Γ/c ⊢ t1 ⇝ t2 : type

K-NameIntro
Γ ⊢ x : value
Γ/c ⊢ t : type

Γ/c ⊢ (x : t) : type

K-Consumes
Γ/• ⊢ T : κ

κ ∈ {type, perm}
Γ/◦ ⊢ consumes T : κ

K-And
Γ ⊢ a : κ1 κ1 ∈ {type, perm}

Γ/c ⊢ T2 : κ2
Γ/c ⊢ (T2 | ma) : κ2

K-App
Γ ⊢ X : κ⃗→ κ Γ/• ⊢ #T⃗ : κ⃗

Γ/c ⊢ X T⃗ : κ

Figure 7.4: Types and permissions: well-kindedness

K-DataDefinition
data X (Y⃗ : κ⃗) = t⃗

Γ, (Y⃗ : κ⃗)/• ⊢ #⃗t : type
Γ ⊢ X : κ⃗→ type

K-AliasDefinition
alias X (Y⃗ : κ⃗) : κ = T
Γ, (Y⃗ : κ⃗)/• ⊢ #T : κ

Γ ⊢ X : κ⃗→ κ

K-AbstractDefinition
abstract X (Y⃗ : κ⃗) : κ

Γ ⊢ X : κ⃗→ κ

Figure 7.5: Types definitions: well-kindedness

K-Fun
Γ ⊢ [X⃗ : κ⃗] t1 → t2 : type
Γ, (X⃗ : κ⃗), names(t1) ⊢ e
Γ ⊢ fun [X⃗ : κ⃗] t : u = e

Figure 7.6: Expressions: well-kindedness

91

7. Translating Mezzo to Simple Mezzo

that they introduce. These names always have kind value. The names function uses a disjoint union
⊎

, meaning
that any name that is bound twice is an error.

Ki
nd
Ch

ec
k.
ml

:7
95 Thewell-kindedness judgement takes the formΓ/c ⊢ T : κ. Itmeans that under the kind assumptions in Γ, the

type T has kind κ. The extra parameter c is explained later on. The definition of the judgement (Figure 7.4) relies
on an auxiliary judgement, Γ/c ⊢ #T : κ, which is just an abbreviation for Γ; names(T)/c ⊢ T : κ (Figure 7.3).
Intuitively, # is a “beginning-of-scope” mark: it means that, at this point, the names collected by the auxiliary
function names are in scope.

This mark does not explicitly exist in the surface syntax, but is introduced on the fly, so to speak, by the well-
kindedness rules, at certain conventional points.

The names function and the kind-checking rules are related. Intuitively, the result that we wish to state is
that, when kind-checking, names are “properly bound”. Defining what “properly bound” means is hard, though,
because the binding structure of Mezzo is unusual, and because the question is in a sense very much a design
decision for the language. There is no such thing as “being correct” for the translation: it is, after all, a translation,
meaning that it defineswhat the surface syntaxmeans. There are, however, a fewways to check that our translation
means something.

A way of convincing ourselves that our definitions make sense is to ensure neither too few or too many names
are introduced. Having too few binders wouldmean that an occurrence of x: t failed to be accounted for; having
too many binders would mean that names introduced a binder that has no use.

Remark 7.1. The names function, when called at kind type, only ever collects names that correspond to an irrefutable
pattern. I call them irrefutable names.

Seeing a type as a syntactical tree, the function starts from the root of the value, and descends recursively into
the sub-components of the value. Tuple and constructor fields, left-hand sides of conjunctions (t | p) correspond
to sub-components of the value, and are visited. Arguments of type applications may not exist, hence are not
irrefutable: they are not visited. The same goes for the right-hand sides of conjunctions (t | p), which have no
existence at run-time, hence do not correspond to a pattern.

As an example, descending into, say, parameters of type applications (K-App) makes no sense: in list (x : a),
there may be zero, one, or several elements which x refers to: the existence of y@ list x : a does not imply the
existence of a unique value x at type a. It thusmakes no sense to bind x above the type application. The same goes
for arrows: the domain of an arrow cannot bematched via a pattern, but rather refers to the future arguments that
the function will receive. A name introduced within the domain of an arrow should thus not be collected by the
names function.

The kind-checking rules and the names function go hand-in-hand. The following two remarks clarify this
informal statement.

Remark 7.2. Every name introduced in the kind-checking rules via names is used to satisfy the premise inK-NameIntro
exactly once.

Remark 7.3. As a consequence, when kind-checking, we always visit a value t with names(t) ⊆ Γ, meaning that the
first premise in K-NameIntro is always satisfied and is therefore redundant.

Proof. The kind-checking rules for checking t instrument the names function to make it cover the entire syntactic
tree representing t.

For each construct that names does not traverse (parameters of type applications, quantifiers, right-hand side
of conjunctions, arrows), the corresponding kind-checking rules calls names on the sub-components. For each
construct that names does traverse (tuples, constructors, right-hand side of conjunctions), the kind-checking rules
do not call names on the sub-components.

This means that assuming the traversal starts with ⊢ #, then names visits each node of the syntactic tree that
represents t exactly once. 😸

The fact that names does not descend into quantifiers (meaning that K-Quantifier takes care of using ⊢ #
which, in turn, calls names) may seem arbitrary. It is, indeed, a design choice that we made. It seemed to us that,
from a design perspective, this behavior would be slightly un-intuitive.

K-ExternalArrowembodies the conventionwe described informally in the earlier example (§7.1). Names
which appear in the domain are bound within both the domain and the codomain; conversely, names introduced

92

7.2. Kind-checking

in the codomain can be referred to only in the codomain. Again, this makes intuitive sense: one cannot talk about
the return value of a function call before the function has run.

Other checks for types

There are additional restrictions that thewell-kindedness rules should impose: for instance, the consumes keyword
should appear only in the left-hand side of an arrow, and should not appear under another consumes keyword. This
can be expressed by extending thewell-kindedness judgementwith a Boolean parameter, which indicates whether
consumes is allowed or disallowed. KindCheck.ml:658

The • parameter indicates that consumes annotations are not allowed; the ◦ parameter indicates that con-
sumes annotations are allowed. Initially (K-OpenNewScope), consumes annotations are forbidden. Only when
moving to the left-hand side of an external arrow (K-ExternalArrow) does the parameter change to ◦. When
encountering a consumes keyword (K-Consumes), the parametermust be ◦. K-Consumes also encodes the fact
that no nested consumes annotations are allowed.

In order to reduce clutter, all other rules are assumed to work indifferently with ◦ or •; the rules are also
assumed to pass the extra parameter unmodified to their premises. KindCheck.ml:743

Another point that kind-checking rules enforce is that all type applications should be complete (K-App):
Mezzo does not allow a type constructor to be partially applied. The rule also asserts that the type being applied
is a type variable: Mezzo does not allow higher-kinded types. The only form of arrow kinds is thus κ⃗0 → κ0
(where κ0 is one of the base kinds), and the only types which possess such arrow kinds are user-defined types
(K-DataTypeDefinition).

Other standard well-formedness checks are performed, such asmaking sure all the fields of a constructor type
exist, or that data constructors are well-bound. These checks are boringly standard and I thus omit them.

1 Field names can be overloaded; that is, multiple data constructors A and Bmay share a field name f. The user must
make sure, however, that both the types and the expressions they write make sense. The kind-checking phase, for
every structural type A {⃗f : t⃗}:

• looks up the definition of constructor A;
• makes sure that the fields f⃗ are exactly the fields mentioned in the definition, modulo the order they appear

in;
• normalizes this type to make sure that the fields f⃗ are in the same order as the definition.

In expressions, the kind-checking phase ensures that:

• every constructor expression A {⃗f = e⃗} contains exactly the fields from the definition of A;
• for every constructor pattern A {⃗f : p⃗}, the fields f exist in the definition of A.

The lookup of A is un-ambiguous since data constructors, unlike fields, cannot be overloaded: they are lexically
scoped and defining a data constructor by the same name as an existing one masks the previous definition.

Duplicate field names are also ruled out by the kind-checking phase.

Checking expressions

For expressions (Figure 7.7), we adopt the same approach, which is to put Mezzo and Simple Mezzo in the same
syntactic category, and single out the constructions that can only appear in one of the two subsets. KindCheck.ml:986

Kind-checking expressions is remarkably standard and is not shown here: it mostly consists in making sure
that names are well-bound, along with the other checks related to field names I mentioned above. Types that
appear in expressions (assertions, type annotations, type applications) are checked using Γ/• ⊢ #.

The only interesting case is that of the external function. The syntax takes a type for an argument, hence
performing a “pun”: the type is either interpreted as a type (when determining the type of the function, when
calling the function) or as a pattern (when type-checking the function body). The formal rule is presented in
Figure 7.6, where Γ ⊢ e just means “e is well-kinded”. Let us take some time to comment this rule.

Argument as a type We interpret the function argument as a type for kind-checking, and for assigning a type
to the function itself. If the external function is:

fun [X⃗ : κ⃗] t : u = e

93

7. Translating Mezzo to Simple Mezzo

e ::= expression
x variable
e : t type annotation
let p = e in e local definition
e [t : κ] type instantiation
e e function application
(⃗e) tuple (not unary)
A {⃗f = e⃗} data constructor application
e.f field access
e.f← e field update
match e with p⃗→ e⃗ case analysis
tag of e← A tag update
assert p assert permission p
if e then e else e conditional
give e to e adoption
take e from e abandon
e adopts e ownership test
fail dynamic failure

Only in Simple Mezzo :
λ(x : t) : t. e internal anonymous function
Λ(X : κ). e type abstraction

Only in Mezzo :
e; e sequence
fun [X⃗ : κ⃗] t : t = e external anonymous function

p ::= pattern
x variable
(⃗p) tuple pattern
A {⃗f = p⃗} data constructor pattern
p as x conjunction pattern
p : t type annotation
_ wildcard pattern

Figure 7.7: Syntax of expressions

then we first need to check that t and u are both well-kinded. We follow the same conventions that prevail for
types, and check the validity of ∀(X⃗ : κ⃗) t⇝ u.

Su
rf
ac
eS

yn
ta
x.

ml
:3
88 Argument as a pattern Abusing the x: t notation for types, we understand the name introduction construct

to also introduce a name whose scope is the argument, the return type, as well as the entire function body. This
interpretation stems from the similarity of the name introduction construct with the classic notation for function
arguments. More formally, name introductions correspond to components of the argument that have a unique
existence at run-time, hence can be referred to in the function body.

This interpretation of a type as a pattern is governed by the t2p function (Figure 7.8). The names bound by t
in e are names(t). This is embodied by K-Fun.

Later on, the translation T-Funmakes this pun explicit by converting the external function definition into an
internal one that uses an actual pattern.

Checking data type definitions

Data types are also subject to a few checks, in order tomake sure that branches are well-formed constructor types.
The checks are listed in Figure 7.5.

94

7.3. Translation

t2p(x : t) = t2p(t) as x
t2p(⃗t) = (

−−−→
t2p(t))

t2p(A {⃗f : t⃗} adopts u) = A {⃗f =
−−−→
t2p(t)}

t2p(t | ma) = t2p(t)
t2p(t | p) = t2p(t)
t2p(consumes t) = t2p(t)
t2p(t) = _

Figure 7.8: Type-to-pattern function

T1-OpenNewScope
T ▶ T′

#T ▶ ∃(names(T)) T′

Figure 7.9: Types and permissions: first translation phase (auxiliary judgement)

T1-Var
x ▶ x

T1-Unknown
unknown ▶ unknown

T1-Sing
=x ▶ =x

T1-Bar
T ▶ T′ #P ▶ P′

(T | P) ▶ (T′ | P′)

T1-Tuple
T⃗ ▶ T⃗′

(T⃗) ▶ (T⃗′)

T1-Concrete
T⃗ ▶ T⃗′ #U ▶ U′

A {⃗f : T⃗} adoptsU ▶ A {⃗f : T⃗′} adoptsU′

T1-Atomic
T ▶ T′

x@T ▶ x@T′

T1-Empty
empty ▶ empty

T1-Conjunction
P1 ▶ P′

1 P2 ▶ P′
2

P1 ∗ P2 ▶ P′
1 ∗ P′

2

T1-Quantifier
#T ▶ T′

∀(x : κ) T ▶ ∀(x : κ) T′

∃(x : κ) T ▶ ∃(x : κ) T′

T1-ExternalArrow
T1 ▶ T′

1 #T2 ▶ T′
2

T1 ⇝ T2 ▶ ∀(names(T1)) T′
1 ⇝ T′

2

T1-NameIntro
T ▶ T′

x : T ▶ (=x | x@T′)

T1-Consumes
T ▶ T′

consumes T ▶ consumes T′

T1-And
T ▶ T′

(T | ma) ▶ (T′ | ma)

T1-App
#T⃗ ▶ T⃗′

X T⃗ ▶ X T⃗′

Figure 7.10: Types and permissions: first translation phase

7.3 Translation

Wenowdefine the translation of (well-kinded) types andpermissions from the surface syntax into the core syntax.
For greater clarity, we present it as the composition of two phases. In the implementation, the two phases can be
merged. TransSurface.ml:106

In the first phase, we eliminate the name introduction construct. In the second phase, we transform the ex-
ternal function type into its internal counterpart, and at the same time eliminate the consumes construct.

Phase 1

The first phase is described by the translation judgement T ▶ T′, whose definition (Figure 7.10) relies on the
auxiliary judgement #T ▶ T′ (Figure 7.9). Both T and T′ live within the external syntax subset; T′, however, no
longer contains name introductions.

Remark 7.4. The translation rules mirror the kind-checking rules: whenever kind-checking uses ⊢ #, the translation

95

7. Translating Mezzo to Simple Mezzo

T2-ExternalArrow
T1 ▷ T′

1 T2 ▷ T′
2

t′in1 = [T/consumes T]T′
1 t′out1 = [?/consumes T]T′

1

T1 ⇝ T2 ▷ ∀(x : value) (=x | x@ t′in1)→ (T′
2 | x@ t′out1)

Figure 7.11: Types and permissions: second translation phase (only one rule shown)

uses # ▶. Thus, the translation materializes the implicit name-binding convention by introducing explicit quantifiers, i.e.
“the translation is faithful to the kind-checking rules”.

The main rules of interest are T1-OpenNewScope, which introduces explicit existential quantifiers for the
names whose scope begins at this point; T1-ExternalArrow, which introduces explicit universal quantifiers,
above the function arrow, for the names introduced by the domain of the function; and T1-NameIntro, which
translates a name introduction form to a conjunction of a singleton type =x and a permission x@T′. The two
occurrences of x in this conjunction are free: they refer to a quantifier that must have been introduced higher up
by T1-OpenNewScope or T1-ExternalArrow.

Lemma 7.5. Well-kindedness is preserved by the first translation phase:

• Γ/c ⊢ T : κ and T ▶ T′ imply Γ/c ⊢ T′ : κ, where c stands for either • or ◦.
• Γ/c ⊢ #T : κ and #T ▶ T′ imply Γ/c ⊢ T′ : κ.

In the conclusion, ⊢ or ⊢ # are the same, since there are no name intros.

Lemma 7.6. If T ▶ T′ or #T ▶ T′ holds, then T′ does not contain a name introduction construct.

Phase 2

The second phase is described by the translation judgement t ▷ t′. t does not contain name introductions, but
remains within the external syntax. t′ no longer contains name introductions nor external arrows; it may still
contain consumes annotations where allowed (per the kind-checking rules). Thus, when▷ is called at top-level,
where consumes annotations are not allowed (K-OpenNewScope), it produces a type which no longer contains
name introductions, consumes keywords or external arrows, that is, a type that belongs to the internal syntax.

The definition of the judgement appears in Figure 7.11. Only one rule is shown, as the other rules (omitted)
simply encode a recursive traversal. The rule T2-ExternalArrow does several things at once.

First, it transforms an external arrow⇝ into an internal arrow→. Second, it introduces a fresh name, x,
which refers to the argument of the function; this is imposed by the singleton type =x. This name is universally
quantified above the arrow; this is the same idiom that wewould have used to eliminate a name introduction form
that appears at the root of the function domain. Finally, in order to express themeaning of the consumes keywords
thatmay appear in the type t′1, it constructs distinct pre- and postconditions, namely x@ t′in1 and x@ t′out1 . These
permissions respectively represent the properties of x that the function requires (prior to the call) and ensures
(after the call).

The type t′in1 is defined as [t/consumes t]t′1. By this informal notation, we mean “a copy of t′1, where every
subterm of the form consumes t is replaced with just t”, or in other words, “a copy of t′1, where every consumes

keyword is erased”.
The type t′out1 is defined as [?/consumes t]t′1. By this informal notation, we mean “a copy of t′1, where every

subterm of the form consumes t is replaced with either unknown (at kind type) or empty (at kind perm), as appro-
priate”. These two types are our⊤ types for their respective kinds.

Thus, the permission x@ t′in1 represents the ownership of the argument, including the components marked
with consumes, whereas the permission x@ t′out1 represents the ownership of the argument, deprived of these
components. In other words, we take a permission for the “full” argument, and return a modified permission for
the argument, where all parts marked consumed have been “carved out”.

96

7.3. Translation

T-Fun
t⇝ u #▶▷ ∀(X⃗′ : κ⃗′) t′ → u′ p = t2p(t) e ▷ e′

fun [X⃗ : κ⃗] t : u = e ▷
Λ(X⃗ : κ⃗). Λ(X⃗′ : κ⃗′). λ(x : t′) : u′. let p = x in e′

Figure 7.12: Expressions: translation

Remark 7.7. T′
2 does not contain consumes annotations. Indeed, K-ExternalArrow uses /• for checking T2, mean-

ing that consumes annotations are ruled out. T′
1, conversely, may contain consumes annotations. These annotations

only appear in specific positions, though. For instance, if the argument T1 is a tuple, one of the components of the tuple
may be of the form consumes u. However, if the T1 is of the form list u, u may not contain any consumes keyword, as it
would make no sense.

A way to understand this is to think of consumes keywords are being only allowed for sub-components of the
function’s argument. One can consume a tuple component, or a record component. In the list u example above, one
cannot consume u, as it may not exist (Nil case) or as they may be several such u.

Lemma 7.8. Well-kindedness is preserved by the second translation phase: assuming that t contains no name introduc-
tion forms, Γ/c ⊢ t : κ and t ▷ t′ imply Γ/c ⊢ t′ : κ.

Lemma 7.9. Assuming t does not contain name introductions, if t ▷ t′ and Γ/• ⊢ t : κ hold, then t′ contains no
external arrow⇝ and no consumes keyword.

Proof. Per the definition of ▷, t′ contains no external arrows. Per Lemma 7.8, Γ/• ⊢ t′ : κ. Since t′ no longer
contains external arrows, the • parameter in the kind-checking rules will never switch to ◦, meaning that t′ no
longer contains consumes keywords. 😸

Lemma 7.10. Γ/• ⊢ #t : κ, #t ▶ t′ and t′ ▷ t′′ imply that t′′ is in the internal syntax and Γ ⊢ t′′ : κ.

Proof. Composition of Lemma 7.5 and Lemma 7.8 for the well-kindedness conclusion, and of Lemma 7.6 and
Lemma 7.9 for the internal syntax conclusion. 😸

Translating data type definitions

TransSurface.ml:309

Data type definitions are also translated via # ▶ followed by▷.

Translating expressions

TransSurface.ml:649

Expressions are translated in one phase, and rely on the combination of the two translations on types, which we
write as #▶▷. We write e ▷ e′ for translating e into e′.

Minor translations are performed: for instance, e; e′ is translated into let () = e in e′. This is a mere matter of
convenience. Types that occur inside expressions (type annotations, assertions, type applications) are translated
with #▶▷.

Just like kind-checking, the translation of functions is more interesting and is shown in Figure 7.12. Again,
the argument type is paired with the return type so as to be translated like a regular function type. We obtain an-
other function typewith some universal quantifiers. Both user-introduced quantifiers (that is, X⃗) and translation-
introduced quantifiers (that is, X⃗′) are made explicit with Λ-abstractions.

The type-as-argument convention ismade explicit using the type-to-pattern conversion (Figure 7.8)whichwe
mentioned earlier; this allows us to use a classic, one-argument λ-abstraction followed by a let-pattern binding. In
the internal syntax of expressions, just like in the internal syntax of types, λ-abstractions consume their argument.

Let us take an example to illustrate this convention. The left projection for a pair projl is defined as follows.

val projl [a, b] (consumes x: a, y: b): a =

x

This is implicitly converted as:

97

7. Translating Mezzo to Simple Mezzo

val projl = fun [a, b] (consumes x: a, y: b): a =

x

The function-expression, in math font, is:

fun [a, b]. (consumes x : a, y : b) : a = x

The function type (consumes x : a, y : b)⇝ a is translated as:

∀(r, x, y : value). (=r | r@ ((=x | x@ a), (=y | y@ b)))→ (a | r@ (unknown, (=y | y@ b)))

The conversion of the argument into a pattern gives:

t2p(consumes x : a, y : b) = (x, y)

The entire function is thus translated as:

Λ(a, b)Λ(r, x, y : value).
λ(r′ : (=r | r@ ((=x | x@ a), (=y | y@ b)))) : (a | r@ (unknown, (=y | y@ b))) =

let x′, y′ = r′ in x′

This makes the pun completely explicit, and introduces fresh names for the variables r′, x′ and y′, which are ex-
pression variables, not just type variables.

The first thing that the type-checker does, upon entering the function body, is to assume the following per-
mission:

r′ @ (=r | r@ ((=x | x@ a), (=y | y@ b)))

which is rewritten into:
r@ (=x, =y) ∗ x@ a ∗ y@ b ∗ r = r′

After that, writing let x′, y′ = r′ in . . . simply adds two new equations x = x′ and y = y′ into the context. The
pun is complete.

This “extended” scope for the type variables that, beyond the argument,may also appear in the function’s body,
bears some resemblance to the “explicit-forall” extension of Haskell, where a type variable, even if only bound in
the type annotation, may also appear in the function body later on.

f :: forall a. a -> a

f = \(x: a) -> x

98

8. Type-checking
SimpleMezzo

The previous chapter defined the translation from Mezzo to Simple Mezzo. We are now ready to (finally!) state
the typing rules of Simple Mezzo.

There are two essential judgements: the first one is permission subsumption (§8.2), which defines which
operations are legal for transforming a permission into another. It may be understood as our subtyping relation
for permissions. The second one is the type-checking judgement for expressions (§8.3).

The subsumption and type-checking rules frequently rely on a “is duplicable” predicate; this predicate is de-
fined later on (§8.4). Some rules also rely on a notion of variance. Variance is standard and I write a little bit about
it in this chapter as well (§8.6).

(As a side note, from now on, the # symbol disappears and# is understood to mean “length of”.)
As I mentioned earlier in the introduction, the formalization and the metatheory ofMezzo are not covered in

this dissertation, but in a separate journal paper [BPP14a].

8.1 Memorymodel

Before introducing the type-checking rules, I believe the memory model of Mezzo deserves a brief presentation.
Mezzo is compiled, as I mentioned already, into OCaml; therefore, our memory model is very close to that of
OCaml.

Values are tagged; they are either 31-bit integers, or pointers to memory blocks. A tuple (x1, . . . , xn) is rep-
resented as a block of size n where the i-th field contains the value xi. A constructor A {⃗f = x⃗} is represented as
a memory block of size n + 2, where the 0-th field contains the integer associated to constructor A, the next field
contains the “hidden field” required for the adoption/abandon mechanism, while the subsequent fields contain
the values x⃗. A constructor B with no fields is represented as a memory block of size two, where the first field
corresponds to the constructor and the second field is used for the adoption/abandon mechanism. Currently, all
data types are assigned an extra, hidden field, even if immutable. We plan to optimize this in the future. The first
constructor field may be mutated; this operation is supported by the OCaml run-time system.

Just like in OCaml, we assume memory management to be handled by a garbage-collector.
This memory model differs from that of OCaml ([LDF+14], §19.3):

• in OCaml, tags of constructor blocks may not be mutated;
• in OCaml, a constant constructor B is represented as an immediate integer value,
• in OCaml, there is no hidden field.

99

8. Type-checking Simple Mezzo

Reflexive
P ≤ P

Transitive
P1 ≤ P2 P2 ≤ P3

P1 ≤ P3

EmptyTop
P ≤ empty

EmptyAppears
P ≡ empty ∗ P

StarCommutative
P1 ∗ P2 ≡ P2 ∗ P1

StarAssociative
P1 ∗ (P2 ∗ P3) ≡ (P1 ∗ P2) ∗ P3

EqualityReflexive
empty ≤ (x = x)

EqualsForEquals
(y1 = y2) ∗ [y1/x]P ≡ (y1 = y2) ∗ [y2/x]P

CopyDup
P is duplicable

C[t] ∗ P ≤ C[(t | P)] ∗ P

HideDuplicablePrecondition
P is duplicable

(x@ (t1 | P)→ t2) ∗ P ≤ x@ t1 → t2

MixStar
x@ t ∗ P ≡ x@ (t | P)

ExistsIntro
[T/X]P ≤ ∃(X : κ) P

ExistsStar
P1 ∗ ∃(X : κ) P2 ≡ ∃(X : κ) (P1 ∗ P2)

ExistsAtomic
x@ ∃(X : κ) t
≡ ∃(X : κ) (x@ t)

ForallElim
∀(X : κ) P ≤ [T/X]P

ForallStar
P1 ∗ ∀(X : κ) P2 ≡ ∀(X : κ) (P1 ∗ P2)

ForallAtomic
x@ ∀(X : κ) t
≡ ∀(X : κ) (x@ t)

DecomposeTuple
y@ (. . . , t, . . .)

≡ ∃(x : value) (y@ (. . . , =x, . . .) ∗ x@ t)

DecomposeBlock
y@ A {F[f : t]} adopts u

≡ ∃(x : value) (y@ A {F[f = x]} adopts u ∗ x@ t)

Fold
A {⃗f : t⃗} adopts u is an unfolding of X T⃗

x@ A {⃗f : t⃗} adopts u ≤ x@X T⃗

Unfold
A {⃗f : t⃗} adopts u is an unfolding of X T⃗

X T⃗ has only one branch

x@X T⃗ ≤ x@ A {⃗f : t⃗} adopts u

UnknownAppears
empty ≤ x@ unknown

DynamicAppears
t is exclusive

x@ t ≤ x@ t ∗ x@ dynamic

CoTuple
t⃗ ≤ u⃗

x@ (⃗t) ≤ x@ (⃗u)

CoBlock
t⃗ ≤ u⃗ t ≤ u

x@ A {⃗f : t⃗} adopts t ≤ x@ A {⃗f : u⃗} adopts u

CoStar
P1 ≤ P2 Q1 ≤ Q2

P1 ∗ Q1 ≤ P2 ∗ Q2

CoArrow
u1 ≤ t1 t2 ≤ u2

x@ t1 → t2 ≤ x@ u1 → u2

CoForall
P ≤ Q

∀(X : κ) P ≤ ∀(X : κ)Q

CoApp
variance(X) = v⃗ Ti

vi
≤ T′

i

x@X T⃗ ≤ x@X T⃗′

Frame
x@ t→ t′ ≤ x@ (t | P)→ (t′ | P)

CommuteArrow
x@ (∃(X : κ).t)→ t′ ≡ x@ ∀(X : κ).(t→ t′)

UnifyApp
A {⃗f : t⃗} is an unfolding of X T⃗

y@X T⃗ ∗ y@ A {⃗f = x⃗}
≡ A {⃗f : t⃗} ∗ y@ A {⃗f = x⃗}

UnifyBlock
y@ A {⃗f = x⃗}∗ y@ A {⃗f = x⃗′}

≡ y@ A {⃗f = x⃗}∗ x⃗ = x⃗′

UnifyTuple
y@ (=⃗x)∗ y@ (=⃗x′)

≡ y@ (=⃗x)∗ x⃗ = x⃗′

Figure 8.1: Permission subsumption

100

8.2. Subsumption rules

Weaken
P1 ∗ P2 ≤ P2

Duplicate
P is duplicable

P ≤ P ∗ P

Eta
u1 ≤ (t1 | P) (t2 | P) ≤ u2

t1 → t2 ≤ u1 → u2

CoArrow2
P is duplicable

(u1 | P) ≤ t1 (t2 | P) ≤ u2
P ∗ x@ t1 → t2 ≤ x@ u1 → u2

DecomposeAny
T ≡ ∃(x : value)(=x | x@T)

Figure 8.2: Some sample derivable subsumption rules

Covariant
T ≤ T′

T
co
≤ T′

Contravariant
T′ ≤ T

T
contra
≤ T′

Invariant
T ≡ T′

T
inv
≤ T′

Bivariant
T

bi
≤ T′

Figure 8.3: Variance-dependent subsumption judgement

Sub
x@T ≤ x@T′

T ≤ T′

Figure 8.4: Subtyping judgement

8.2 Subsumption rules

Subsumption rules are shown in Figure 8.1. The judgement is of the form P ≤ Q, meaning that one can weaken P
in order to obtain Q. Some of these rules are reversible, that is, they work both ways: this is written as≡ instead
of≤. This relation is similar to entailment in separation logic. Onemay write (§2.2) P ⊩ Q; inMezzo, one writes
P ≤ Q.

Subsumption soundness is backed by an interpretation of permissions ⊩ [BPP14a] in terms of a run-time
configuration. The proof of soundness is not covered in the present thesis.

Subsumption is useful in numerous situations. Subsumption is required, for instance, to show that the post-
condition of a function is satisfied; that the current permission can be recombined to match the pre-condition
required for a function call; that a type annotation can be satisfied.

The subsumption relation is, naturally, reflexive (Reflexive). It is also transitive (Transitive): this prop-
erty is essential for stepping through a program and performing intermediary reasoning steps. The weakest per-
mission we can possibly have is empty (EmptyTop).

The next rules talk about our ∗ conjunction. The conjunction of permissions admits a neutral element empty
(EmptyAppears); it is commutative and associative (StarCommutative, StarAssociative). These rules
merely state that ∗ is well-behaved and provides the usual properties one expects.

Combining Transitive, EmptyTop and EmptyAppears allows one to drop any permission at any time
(this is Weaken, in Figure 8.2).

Equalities between program variables have a distinguished status among permissions. First, the permission
x@ =x, also written x = x, is always available (EqualityReflexive). Second, whenever y1 = y2 is available,
one may use y1 or y2 indifferently (EqualsForEquals). The latter rule formalizes our earlier claim that having
y1 = y2 means we can use y1 and y2 interchangeably.

Some operations are only possible for duplicable permissions. For instance, duplicable permissions may be
freely copied (Duplicate in Figure 8.2): this is the essence of “being duplicable”. This rule, however, is a par-

101

8. Type-checking Simple Mezzo

ticular case of the more general CopyDup, which states that one may stash a duplicable permission under any
context. The context may be non-linear (parameter of a list type application; codomain of an arrow), but we can
conceptually obtain infinitely many copies of the permission.

HideDuplicablePrecondition is also essential, since it allows one to drop the pre-condition of a function
provided the pre-condition is available and duplicable. Combined with CoArrow, it allows to derive CoAr-
row2 (Figure 8.2), which will be useful later on as it corresponds more closely to what the type-checker imple-
ments. Rules HideDuplicablePrecondition and CoArrow2 can be derived from one another: we chose to
keep HideDuplicablePrecondition.

MixStar states that a permission within a type/permission conjunction may be floated out into the outer
conjunction. Combined with DecomposeTuple and DecomposeBlock, it allows to float out or nest permis-
sions at arbitrary depth.

The next rules concern existential quantification. One may pack a permission with an existential quantifier
(ExistsIntro). Quantifiers may be floated out of / into conjunctions (ExistsStar) and atomic permissions
(ExistsAtomic). We omit the non-capture premises of these rules which are standard.

The symmetrical rule for instantiation (ForallElim) is included, along with ForallStar and Foral-
lAtomic for moving universal quantifiers.

Onemay name tuple and constructor fields using singleton types (DecomposeTuple, DecomposeBlock).
These rules are used pervasively throughout all the examples we described earlier; whenever we said earlier “the
type-checker expands this permission”, we meant that the type-checker applied the decomposition subsumption
rules.

More generally, one can decompose any type (DecomposeAny, Figure 8.2); this rule is derivable using the
definition of subtyping, using EqualityReflexive followed by ExistsIntro.

The system is equipped with rules for dealing with data types. Onemay weaken a permission by transforming
a concrete type into a nominal type (Fold); in the special case that the data type only has one branch, one may
perform the converse operation at any time (Unfold).

The dynamic type is always available as long as the object is exclusive (DynamicAppears).
The system features an unknown type, that is, a top type at kind type. It could be, conceivably, defined as

syntactic sugar for ∃(a : type) a; however, the implementationmanipulates unknown as a separate type, so I chose
to keep it in the remainder of the dissertation.

The system possesses covariant tuples (CoTuple), constructors (CoBlock), conjunctions (CoStar) and
arrows (CoArrow). Type applications have a specific variance for each parameter (CoApp). We assume a
variance function which returns the variance of each parameter of the type X. We then use a variance-dependent
subsumption judgement (Figure 8.3).

Arrows are equipped with some special rules. The most important one is perhaps Frame: if a function can
be type-checked without P, then it can safely be passed P and will not use it. There is no premise: this works
for any P, not just duplicable P’s. Frame is used, in combination with CoArrow, for deriving Eta, which will
be used later on (Chapter 11) for the algorithmic specification of subtyping. CommuteArrow is technical, but
important for implementing the type-checker: it states that existential quantifiers in the domain of arrows are
universal quantifiers above the arrow.

1 CoArrow is a true deduction rule, not an equivalence rule. In other words:

t2 ≤ t1 ∧ u1 ≤ u2 ̸≡ t1 → u1 ≤ t2 → u2

This equivalence holds in simpler systems, such as simply-typed lambda calculus with subtyping.
Let us see why this rule does not make sense inMezzo with a simple example. Let us take id@ ()→ (). Using

the frame rule (Frame), one obtains id@ (| p) → (| p). If CoArrow were an equivalence rule, going right to
left we would obtain () ≤ (| p), that is, we would be able to obtain permissions out of thin air.

The last three rules are simplification rules that leverage information contained in redundant conjunctions.
Intuitively, if I have both y@ (x1, . . . , xn) and y@ (x′1, . . . , x′n), then it must be the case that x1 = x′1 ∗ · · · ∗
xn = x′n. This is rule UnifyTuple. A similar rule exists for constructors (UnifyBlock). We used these rules
in an earlier digression (§7.1) to illustrate how structural identity information for tuple arguments is preserved.
These rules are useful in other contexts as well [GPP13]. In the case of constructors, a third rule comes in handy
(UnifyApp): it states that if I know that y is both a list and a Cons cell, then I can unfold the list type to regain full

102

8.3. Type-checking rules

information for the fields of the Cons cell. This rule is usually applied along with DecomposeBlock, followed by
UnifyBlock, so as to further simplify the conjunction.

Once the subsumption relation is defined on types at kind perm, one can define a corresponding subtyping
relation on types at kind type easily (Figure 8.4).

The subsumption relation is leveraged by two key algorithms: normalization (Chapter 9) and subtraction
(Chapter 11).

About inconsistent conjunctions

The subsumption rules could, in theory, state which situations lead to inconsistent conjunctions. Possessing an
inconsistent conjunction means that the corresponding program point is unreachable. The system is sound: exe-
cution cannot reach an inconsistent state.

A subsumption rule for an inconsistent conjunctionwill typically produce∀(P : perm)P, that is, the⊥ type at
kind perm. One could also imagine an inconsistent keywordwhich runs over the current permission to somehow
figure out that it is, indeed, inconsistent, and produces type⊥.

Examples of inconsistent permissions are, for instance, x@ t∗x@ t′ where both t and t′ are exclusive. Another
inconsistent situation is x@ (⃗t) ∗ x@ (⃗t′) when the number of fields don’t match.

It turns out that this feature is hardly ever useful in practice, becauseMezzo does not enforce pattern-matching
exhaustivity. While the type-checker does detect certain inconsistent states, it is seldom leveraged by the user in
order to type-check an actual program. We thus omit this aspect from the discussion.

8.3 Type-checking rules

The typing rules of expressions are presented in Figure 8.5. The format of our typing judgements is K; P ⊢ e : t,
meaning that under kinding environment K, consuming permission P allows one to type-check e with type t.
The permission P may be understood as “the current permission”, that is, the permission which is available at the
program point located right before the expression e. The kinding environmentK contains existentially-quantified
variables which have been opened in scope, either program variables or type variables. Program variables in K
stand for the variables x, where x@ t is in P. K binds all (existentially-quantified) program variables x that appear
via x@ t in P.

These typing rules have been proved soundusing a syntactic approach [BPP14a]. This aspect is not developed
in this thesis.

General comments

AHoare-style presentation Therules do not use the traditional presentation “{P} s {Q}”, which is common in
statement-oriented languages, but an expression-based presentation of the form “¶ ⊢ e : t”. That is, the output of
a rule is a type. This type can be interpreted as a predicate which holds for the return value ret. Phrased differently,
the post-condition is t(ret).

Another way to think of it is, even though the right-hand side of a conclusion reads t, to imagine that t is of
the form (t′ | P). The Let rule, for instance, embodies a sequence. One way to see it, without loss of generality,
is as follows.

Let
K; P0 ⊢ e1 : (t1 | P1) K, x : value; P1 ∗ x@ t1 ⊢ e2 : (t2 | P2)

K; P0 ⊢ let x = e1 in e2 : (t2 | P2)

We thus thread a “current permission” throughout sequences, just like in the usual presentation of separation logic.
SinceMezzoblendspermissions and types together, there is actually no reason tohave a separatepost-condition

with a distinguished status in the typing rules. It thus feels natural to have the typing judgement yield a type in-
stead of a type and a permission, since the latter can be recovered via the type/permission conjunction.

A declarative presentation Another thing to note is that this presentation is very far from being algorithmic.
Indeed, designing an actual procedure for determining whether a program inMezzo is well-typed or not is a com-
plex task and I devote an entire part of this thesis to this problem (Part IV). For instance, the type-checking rules

103

8. Type-checking Simple Mezzo

Sub
K; P2 ⊢ e : t1

P1 ≤ P2 t1 ≤ t2
K; P1 ⊢ e : t2

Var
K ⊢ x : =x

Let
K; P ⊢ e1 : t1 K, x : value; x@ t1 ⊢ e2 : t2

K; P ⊢ let x = e1 in e2 : t2

Function
K; P ∗ x@ t1 ⊢ e : t2 P is duplicable

K; P ⊢ λ(x : t1) : t2. e : t1 → t2

Abstraction
K,X : κ; P ⊢ e : t

K; P ⊢ Λ(X : κ).e : ∀(X : κ) t

Instantiation
K; P ⊢ e : ∀(X : κ) t1

K; P ⊢ e : [T2/X]t1
K; P ⊢ e [T2] : [T2/X]t1

Application
K; x1 @ t2 → t1 ∗ x2 @ t2 ⊢ x1 x2 : t1

Tuple
K ⊢ (⃗x) : (=⃗x)

New
A {⃗f} is defined

K ⊢ A {⃗f = x⃗} : A {⃗f = x⃗} adopts⊥

Read
t is duplicable

P is x@ A {F[f : t]} adopts u
K; P ⊢ x.f : (t | P)

Write
A {. . .} is exclusive

K; x1 @ A {F[f : t1]} adopts u ⊢ x1.f← x2 : (|
x1 @ A {F[f = x2]} adopts u)

Match
for every i, K; P ⊢ let pi = x in ei : t

K; P ⊢ match x with p⃗→ e⃗ : t

WriteTag
A {. . .} is exclusive B {f⃗′} is defined #⃗f = #f⃗′

K; x@ A {⃗f : t⃗} adopts u ⊢ tag of x← B : (|
x@ B {f⃗′ : t⃗} adopts u)

Give
t2 adopts t1

K; x1 @ t1∗ x2 @ t2 ⊢
give x1 to x2 : (| x2 @ t2)

Take
t2 adopts t1

K; x1 @ dynamic ∗ x2 @ t2 ⊢
take x1 from x2 : (| x1 @ t1∗ x2 @ t2)

Adopts
t2 adopts t1

K; P ∗ x1 @ dynamic ∗ x2 @ t2 ⊢
x2 adopts x1 : (bool | x2 @ t2 ∗ P)

Fail
K; P ⊢ fail : t

Frame
K; P1 ⊢ e : t

K; P1 ∗ P2 ⊢ e : (t | P2)

ExistsElim
K,X : κ; P ⊢ e : t

K; ∃(X : κ) P ⊢ e : t

Assert
K, P ⊢ assert P : (| P)

Annot
K, P ⊢ e : t

K, P ⊢ (e : t) : t

Conditional
K, P ∗ x@ True ⊢ e1 : t
K, P ∗ x@ False ⊢ e2 : t

K, P ∗ x@ bool ⊢ if x then e1 else e2 : t

Figure 8.5: Typing rules

104

8.3. Type-checking rules

LetTuple
(⃗t) is duplicable

K, x⃗ : value; P ∗ y@ (⃗t) ∗ x⃗@ t⃗ ⊢ e : t
K; P ∗ y@ (⃗t) ⊢ let (⃗x) = y in e : t

LetDataMatch
(⃗t) is duplicable

K, x⃗ : value; P ∗ y@ A {⃗f : t⃗} adopts u ∗ x⃗@ t⃗ ⊢ e : t

K; P ∗ y@ A {⃗f : t⃗} adopts u ⊢ let A {⃗f = x⃗} = y in e : t

LetDataMismatch
A and B belong to a common algebraic data type

K; P ∗ y@ A {⃗f : t⃗} adopts u ⊢ let B {f⃗′ = x⃗} = y in e : t

LetDataUnfold
A {⃗f : t⃗} adopts u is an unfolding of X T⃗

K; P ∗ y@ A {⃗f : t⃗} adopts u ⊢ let A {⃗f = x⃗} = y in e : t

K; P ∗ y@X T⃗ ⊢ let A {⃗f = x⃗} = y in e : t

Figure 8.6: Auxiliary typing rules for pattern matching

do not provide a way to decidewhen to instantiate universal quantifiers (Instantiate), when and how to rewrite
the current permission (Sub), or which part of the current permission to frame (Frame).

Some of the rules are also very general: Write, for instance, allows any t2. In practice, we want t2 to be a
singleton type, so as to keep local aliasing information, as we argued earlier. The type-checker will thus use a
restricted instantiation of the rule. Conversely, some of the rules are restrictive and demand duplicable types
(Read); the type-checker will use a proper normalized form for the current permission P to make sure such a
premise is always satisfied.

A-normal form Many of the rules (Application, Conditional) require variables (named x) instead of ex-
pressions (named e). Having a name for a subexpression is sometimes mandatory, as in Conditional (we need
a name x so as to refine the corresponding permission), sometimes a matter of convenience, as in Application
(it saves the need for inlining the Let rule). In a rule such as Take, having x2 allows us to state that type-checking
the abandon operation leaves x2 unchanged: having a name there is mandatory as well.

Introducing names for subexpressions can be done via additional let-bindings. This transformation is some-
times known as A-normal form. In the type-checker, this transformation is not performed explicitly through AST
transformations, but rather performed on-the-fly, implicitly, when type-checking expressions.

This may be understood as additional typing rules, which introduce extra let-bindings. For instance, in the
case of application:

App-General
K; P ⊢ let x1 = e1 in let x2 = e2 in x1 x2 : t

K; P ⊢ e1 e2 : t

Reviewing the rules

Sub ties the subsumption and the type-checking relation together: we can recombine the current permission
according to the subsumption rules we just saw.

Var is the axiom rule.
Let is the sequencing rule; it does not specify how to craft t1 so that it contains enough knowledge to type-

check e2: again, this task is the job of an algorithm (which will, typically, put “everything left” in t1).
Function is central. It allows a closure to capture any permission as long as it is duplicable. This restriction

is necessary to justify our earlier claim that function types are always duplicable.
Instantiation covers two cases. The first one is user-provided type applications, which have to be per-

formedwith the user-provided typeT2. The second one is spontaneous type applications. Indeed, the translation
phase (Chapter 7) introduces universal quantifiers above function definitions. This means that the type-checker
needs to be able to instantiate these quantifiers without user-provided type annotations.

105

8. Type-checking Simple Mezzo

Application is standard. It corresponds to procedure call in separation logic. This rule is, of course, intended
to be used in conjunction with Frame to save permissions that are not required for performing the function call.

Rules Tuple and New correspond to the allocation of tuple and constructors respectively. While the two
rules are fairly standard, the adopts clause in New is interesting. A freshly-allocated constructor initially has its
adopts clause set to ⊥, that is, ∀α.α, provided that the constructor is exclusive. In other words, the constructor
currently adopts nothing, but can adopt anything. This means that writing:

let g = Graph { ... } in

yields a new permission g@ graph {. . .} adopts⊥. Fortunately, constructor types are covariant in their adopts
clause, meaning that we can instantiate at will the⊥ type should we need, later on, to match a type annotation for
a nominal type, or to perform an actual adoption/abandon operation. If the user writes:

(* n @ node a *)

give n to g;

or:

assert g @ graph a

Then the type-checker will apply the subsumption step:

g@ graph {. . .} adopts⊥
≤ g@ graph {. . .} adopts node a

In the case that the data constructor A is immutable, the adopts clause is irrelevant and is omitted.
Read has an interesting premise: it demands that t be duplicable. This seems restrictive; remember, however,

that a combination of Sub and DecomposeBlock will allow one to introduce a singleton type for the field f.
Singleton types are always duplicable, meaning that the premise of this rule can always be satisfied without any
loss of generality.

1 Requiring t to be duplicable allows us to sidestep completely complex reasoning that would need to take place
should t be affine. Intuitively, we would need to remember we “carved a hole” in x, and track the missing field
whose ownership has been taken. Not only would this be excessively complex, but we would also lack technical
mechanisms for expressing it: Mezzo has no support for such reasoning. The use of singleton types in Mezzo is
thus crucial, because we would not know how to type-check field accesses without it!

Write uses a singleton type to merely record that the field f of x1 now points to x2. Thus, it does not need to
mention any permission of the form x2 @ t2, which simplifies the discussion.

WriteTagmodifies the tag of amemory block in-place. TheconstructorAmust be, naturally, exclusive for the
mutation to take place. The constructor B, however, may be immutable; in this case, this is the “freeze” operation
we mentioned earlier. The precondition states that the constructors must have the same number of fields: that
way, the memory block does not have to be resized. While the OCaml garbage collector supports shrinking a
block, we have not exposed this implementation detail in the typing rules of the language. The adopts clauses
remain identical throughout the update, because changing a type does not change the type of elements currently
adopted by this memory block.

1 This restriction is essential to ensuring soundness: otherwise, one could give an element, write a different tag into
its adopter, and take the same element out with a different type.

Ty
pe
Ch

ec
ke
r.

ml
:2

87 An extra set of rules describe let-pattern bindings (Figure 8.6). This is not a separate judgement, but since
the rules are quite heavyweight, they have been put in a separate figure for clarity. These rules cover shallow pat-
terns, that is, patterns which are not nested. A deep pattern can always be transformed into a shallow pattern by
introducing extra let-bindings in-between the let-pattern bindings: I do not describe this technical, uninteresting
translation.

106

8.3. Type-checking rules

Interestingly, pattern-matchingmay refine the current permission and turn a nominal type into a concrete type,
according to the constructor that is being matched (LetDataUnfold). For instance, this rule will turn list a
into Cons {head : a; tail : list a} whenever matching on Cons. (The usual, converse direction, that is, weakening a
constructor type into the corresponding nominal type, can be obtained by applying Sub.)

LetTuple and LetDataMatch are similar; they describe the destructuring of tuples and constructors. In
the case of tuples, if one has y@ (t1, . . . , tn) and writes let (x1, . . . , xn) = y in e, this gives rise to x1 @ t1 ∗
· · · ∗ xn @ tn. Just like Read, and for the same reasons we exposed earlier, these two rules require that the types
t⃗ be duplicable. Indeed, the permission y@ (⃗t) is kept in the premise, along with x⃗@ t⃗. This is sound only if t⃗
is duplicable. Again, an actual type-checking algorithm will ensure the duplicable premise is always satisfied by
using the decomposition rules.

LetDataMismatchmakes sure that matching on a (wrong) constructor from the same data type is not an er-
ror. Intuitively, the information we have is too precise; we know that matching will fail, meaning that the remain-
der of the code is unreachable and any t is acceptable. Technically, this is important to make sure that programs
do not break if the user refines their code with a more precise permission (e.g. False instead of bool).

There is no rule for thewildcard pattern, as it is similar to Let, except that x is fresh, hence not reachable by the
user. Type annotations inside patterns are translated as type annotations on expressions, which are then checked
by Annot. For instance:

let x, (y: int) = 1, 2 in

becomes:

let x, y = (1, 2): unknown, int in

As-patterns are translated with a let-binding: let p as x = e1 in e2 is translated into let x = e1 in let p = x in e2.
Pattern-matching (Match) piggybacks on the let-pattern rules to define the type-checking of match expres-

sions. In the premise, the branches are all typed with the exact same t. Finding t in practice is difficult, since
we have to apply subtyping rules on each ti to make sure they converge onto the same t without losing useful
information (Chapter 12).

Mezzo currently does not have an exhaustiveness check for pattern-matchings; this is a feature wish for the
future.

Give, Take and Adopts are the rules which power our adoption/abandon mechanism. Rule Give does not
need to return x1 @ dynamic: the permission can be obtained at any time using the subsumption rules.

Dynamic failure (Fail)means the expression canbe given any type, sinceprogramexecutionwill stop anyway.
Frame is similar to the frame rule of separation logic. It allows one to put aside a permission P2, and type-

check e with the remainder P1. One then regains the unused P2. This neat presentation, again, hides algorithmic
difficulties: in practice, one has to synthesize P2 and figure out which permissions should be put aside when type-
checking, say, a function call. This is the frame inference problem from separation logic (§2.2).

ExistsElim opens an existentially-quantified variable into scope.
The programmer can assert that a permission is available at a given program point (Assert) or that a given

expression has the expected type (Annot). A point to note is that our assertions are prescriptive. Here is a code
snippet that illustrates this.

(* x @ MNil *)

assert x @ mlist int;

(* x @ mlist int *)

In other words, even though we have a more precise permission, we stick by the annotation and weaken any
permission we may have so as to exactly match the annotation. The same goes for annotations on expressions:

let x: mlist int = MNil in

...

(* x @ mlist int *)

107

8. Type-checking Simple Mezzo

Affine

Duplicable Exclusive

⊥

Figure 8.7: The hierarchy of modes

Conditional type-checks if-then-else expressions. It behaves like a match statement, in the sense that the per-
mission for the boolean is refined in each branch. This is, however, a simplified version: in our implementation,
this rule works for any x@ t as long as t is a data type with two branches. The first branch is understood to cor-
respond to the “falsy” case (False, Nil, etc.) while the second branch is taken to be the “truthy” case (True, Cons,
etc.). Permissions are refined accordingly in each branch.

Ty
pe

Ch
ec

ke
r.

ml
:9
41

1 This feature is kind of dubious, and we have not found it to be life-changing. We will probably remove it; I don’t
mention it in the remainder of this dissertation, even though it is still implemented at the time of this writing.

There is no type-checking rule for the mode constraint / type conjunction. Indeed, this requires discussing
modes and facts. The following section (§8.4) will introduce the missing typing rules.

8.4 The duplicable and exclusive modes

I have mentioned at the beginning of Chapter 6 that even though Chapter 3 presents “duplicable a” as a permis-
sion (and even though, indeed, the user may think of it as a permission), it is treated differently under-the-hood.
I also mentioned that there were “modes” in the system. The present section makes this concept explicit.

The typing rules (Figure 8.5) mention predicates of the form “is duplicable” or “is exclusive”; “exclusive” and
“duplicable” are modes, which we formally introduce, along with the corresponding lattice. We then provide a
formal definition for the twopredicates. Parameterized algebraic data types enjoymore complex predicates, which
we call facts. Facts are introduced as well; however, computing them is the topic of the subsequent section.

Thecurrent status of the “is exclusive”predicate is unclear. Itwill either disappear once thenew,morepowerful
axiomatization of adoption/abandon is implemented (§8.8), or it will be refined into “slim exclusive” and “fat
exclusive” once a finer-grained control of the hidden field is offered to the user (§3.3).

In any case, even though the next two sections focus on a limited set of modes and facts, we envision a much
more general use for these analyses. For instance, we could add a truly linear mode, where a variable cannot be
discarded. This would extend the lattice of modes with a new top element; the framework would need very few
modifications to properly analyze and compute facts within this extended mode lattice. We could even imagine
user-providedmodes, that is, user-providedpredicates, whichwouldplay the role of type classes. The latticewould
then be extended dynamically, but the analyses would essentially remain the same.

Themode/fact environment

Modes appear in types via themode/type conjunction (Figure 7.1). Fromnowon, our various judgements which
operate on types will thus need to talk about modes.

Modes are predicates over types which form a lattice shown in Figure 8.7. These predicates only make sense
for types at kind perm and type. Types at kind value have nomode. Parameterized types, such as list, have an arrow
kind and enjoy more complex predicates called facts.

The affine mode is a strict superset of duplicable and exclusive. No object in Mezzo can be both duplicable and
exclusive, i.e. no object can have mode ⊥; however, the bottom element is required for the fact computation
which we will see later on. The mode lattice is thus complete. The lattice induces two natural meet ⊓ and join ⊔
operations.

We introduce a new parameter to our judgements, written F, which is the fact environment. It is used in both
the extra typing rules (Figure 8.11) and the “is duplicable” judgement (Figure 8.10). F maps types to facts.

108

8.4. The duplicable and exclusive modes

f ::= ∀(Y⃗ : κ⃗). ∧∧⃗ı fact

i ::= h⇒ m implication

h ::= m1 Y1 ∧ . . . ∧ mn Yn hypothesis

false ::= ⊥ Y1 ∧ . . . ∧ ⊥ Yn syntactic sugar
true ::= affine Y1 ∧ . . . ∧ affine Yn syntactic sugar

Figure 8.8: Syntax of facts

A fact is of the following form (Figure 8.8):

∀Y⃗. ∧∧
m
(m1 Y1 ∧ . . . ∧ mn Yn ⇒ m)

Here is the sample fact for lists, which we have seen already:

F(list) = ∀Y.
∧∧

true ⇒ affine

duplicable Y ⇒ duplicable

false ⇒ exclusive

false ⇒ ⊥

To simplify the discussion:

• we omit the universal quantification ∀Y⃗ over the formal parameters of the data type we are talking about;
since we always study facts for one given data type, we assume the discussion to always be parameterized
over a fixed set Y⃗;

• we just write F(list) = duplicable Y⇒ duplicable, as the implication whose conclusion is affine always takes
the true hypothesis and other implications necessarily take the false hypothesis;

• we sometimes adopt an alternative presentation: we see a fact as a complete map from modes (in the con-
clusion) to hypotheses; we write:

F(list) = H and H(duplicable) = duplicable Y

We also see each hypothesis as a complete map from formal parameters to modes; we write:

F(list)(duplicable) = h and h(Y) = duplicable

In the special case of non-parameterized types (user-defined types or type variables), F(X) maps X into a
special form of fact called a constant fact, which is isomorphic to a mode.

Definition 8.1 (Constant fact). A constant mode m maps into a fact as follows:

constant(m) =

{
true⇒ m′ if m′ ≥ m
false⇒ m′ otherwise

We write F(X) = m to state that the best (smallest) known mode for X is m. We write F(t) = f for “param-
eterized type t satisfies fact f”. Computing the best fact for a user-defined parameterized type is the topic of the
next section (§8.5).

Definition of modes

We now define the subset of types that enjoy these predicates, which we write respectively “t is duplicable” and
“t is exclusive” (Figure 8.10, Figure 8.9). The two judgements are mutually exclusive and a type that satisfies
neither is affine.

109

8. Type-checking Simple Mezzo

X-Def
data mutableX (Y⃗ : κ⃗) = . . .

X is exclusive

X-Concrete
A is a data constructor of X X is exclusive

A {⃗f : t⃗} adopts u is exclusive

X-App
X is exclusive
X t⃗ is exclusive

X-And
F′ = assume(F,m X) F′ ⊢ t is exclusive

F ⊢ (t | mX) is exclusive

X-Var
F(X) = exclusive

F ⊢ X is exclusive

X-Bar
F ⊢ t is exclusive

F ⊢ (t | P) is exclusive

X-Forall
F′ = extend(F, affine X) F′ ⊢ t is exclusive

F ⊢ ∀(X : κ) t is exclusive

X-Exists
F′ = extend(F, affine X) F ⊢ t is exclusive

F ⊢ ∃(X : κ) t is exclusive

Figure 8.9: Definition of the “exclusive” judgement (some rules omitted)

D-Concrete
A is a data constructor of D

D not mutable F ⊢ t⃗ is duplicable

F ⊢ A {⃗f : t⃗} is duplicable

D-Tuple
F ⊢ t⃗ is duplicable

F ⊢ (⃗t) is duplicable

D-App
F ⊢ the unfoldings A⃗ {⃗f : t⃗} are duplicable

F ⊢ X T⃗ is duplicable

D-Abstract
F(X)(duplicable) = h ∀i, ui is h(i)

F ⊢ X u⃗ is duplicable

D-Arrow
F ⊢ t→ u is duplicable

D-Forall
F′ = extend(F,⊥ X) F′ ⊢ t is duplicable

F ⊢ ∀(X : κ) t is duplicable

D-Exists
F′ = extend(F, affine X) F ⊢ t is duplicable

F ⊢ ∃(X : κ) t is duplicable

D-Singleton
F ⊢ =x is duplicable

D-Bar
F ⊢ t is duplicable
F ⊢ P is duplicable

F ⊢ (t | P) is duplicable

D-Dynamic
F ⊢ dynamic is duplicable

D-Anchored
F ⊢ t is duplicable

F ⊢ x@ t is duplicable

D-Empty
F ⊢ empty is duplicable

D-Star
F ⊢ p is duplicable
F ⊢ q is duplicable

F ⊢ p ∗ q is duplicable

D-And
F′ = assume(F,m X)
F′ ⊢ t is duplicable

F ⊢ (t | mX) is duplicable

D-Var
F(X) = duplicable

F ⊢ X is duplicable

Figure 8.10: Definition of the “duplicable” judgement

110

8.4. The duplicable and exclusive modes

The duplicable judgement The “t is duplicable” judgement is defined co-inductively. The definition of the
judgement assumes F to be filled with facts for abstract data types.

Initially, all variables are affine; F may be updated for a mode/type conjunction (D-And); F is used when
looking up the fact for a variable (D-Var). The exact definition of assume and extend is provided later (§8.4);
intuitively, extend just extends the environment F, while assume performs a meet operation on the lattic of modes.

Tuples, being immutable, are duplicable as long as their contents are (D-Tuple): the type (int, int) is dupli-
cable, while the type (ref int, ref int) is not. For data constructors, the same goes as long as the constructor itself
is immutable (D-Concrete).

For a data type application (D-App), we need to consider all possible branches. For that, we take each pro-
jection, that is, each branch where the formal parameters of the data type have been replaced with the effective
parameters of the type application, and make sure that each one of them is in turn duplicable. This, indirectly,
also makes sure (D-Concrete) that X is not defined as mutable.

Abstract types (D-Abstract) have facts attached to them. For abstract types, facts are user-provided, so we
look up the fact associated to X using F. Seeing, as we mentioned earlier, the fact as a map from conclusions to
hypotheses, we look up the conditions associated to the duplicable conclusion. If all hypotheses are satisfied for
the effective arguments, then we can draw the conclusion that the type application is indeed duplicable.

Arrows (D-Arrow) are duplicable, since they can capture nothing but duplicable permissions.
Quantified types (D-Forall, D-Exists) are duplicable if the underlying type is.
The rest of the rules are standard.

The exclusive judgement The “t is exclusive” is only defined for a small subset of types, as the only exclusive
types are concrete types and type applications that belong to an mutable-defined data type. These can take the
form of type variables, though; rules X-And and X-Var make sure that (X | exclusive X) is exclusive too.

An incomplete set of rules These rules are incomplete, and are unable to infer the proper mode in some cases.
The first reason is that ∃a.(a, (duplicable a | a)) will be considered affine. Indeed, in the first occurrence of a is
treated as affine, while the second occurrence is treated as duplicable. The implementation performs a limited
hoisting phase, where hypotheses of the form duplicable a are collected and recorded into F before descending on
the actual type. We have no completeness results for this hoisting procedure.

The second reason why the rules are incomplete is more subtle. Consider the type ∃(a : type) a. We have:

∃(a : type) a ≡ ∃(x : value) =x ≡ ∃(a : type) (duplicable a | a)

From∃(a : type) a, we can obtain (=x | x@ a), then drop x@ a to gain the second type; from∃(x : value) =x,
we can re-pack on =x to gain the third type; from ∃(a : type) (duplicable a | a), we can just drop the mode
hypothesis and regain the first type.

The rules will find the first type to be affine, while they will find the second and third types to be duplicable,
even though the three are equivalent.

Interpretation of modes

One can give a semantic interpretation to these mode predicates using the permission interpretation relation
⊩ [BPP14a].

Lemma 8.2 (Semantics of exclusive). If K ⊢ t : type, t is exclusive⇒ x@ t ∗ y@ t ⊩ x and y are distinct values

Lemma 8.3 (Semantics of duplicable). If K ⊢ p : perm, p is duplicable⇒ p ⊩ p ∗ p. If K ⊢ t : type, t is duplicable if
and only if x@ t is duplicable.

Type-checking rules

Wementioned earlier thatwewould introduce later on the typing rules for themode constraint/type conjunction.
These extra typing rules are shown in Figure 8.11. ModeElim says that whenever we know that mX holds,

we can update the fact environment F with it. We refine the already-existing mode for X with the more precise
mode m using a meet operation ⊓. By default, the mode for a variable is the top element of the lattice, that is,
affine. ModeIntro says that whenever we have learned thatmX holds, we can produce a witness of it via a mode
constraint/type conjunction.

111

8. Type-checking Simple Mezzo

ModeElim
K; F {X 7→ F(X) ⊓ m} ; P ∗ x@ t ⊢ e : t′

K; F; P ∗ x@ (t | mX) ⊢ e : t′

ModeIntro
K; F; P ⊢ e : t F(X) ≤ m

K; F; P ⊢ e : (t | mX)

Figure 8.11: Extra typing rules for dealing with mode constraint/type conjunctions

Computing “the mode of a type”

The coinductive definition of the “is duplicable” judgement allows one to check that a given type satisfies a mode,
but provides no way to compute “the” mode of a type. By this informal expression, we mean the lowest mode in
the lattice that holds for a given type.

One could read Figure 8.10 as a set of recursive rules that, when applied, perform a computation. This would
be sound, but too strict. Indeed, looking at D-App, we see that a type application is duplicable if and only if all its
unfoldings are duplicable. For instance, list t is duplicable if both Nil and Cons {head : t; tail : list t} are duplicable.
A recursive reasoning, for lack of a co-inductive “list t is duplicable” hypothesis, would either loop or determine
Cons {head : t; tail : list t} to be affine and conclude that list t is affine as well.

One could also perform several attempts, first trying to show that “list t is duplicable” then, failing that, try
to show that “list t is exclusive”. This would be terribly inefficient, because, not knowing the mode of t, we would
need to recursively consider all possible modes for t. If t itself contains type applications, the complexity becomes
exponential.

The problem, fundamentally, lies with algebraic data types, as the mode of a type application depends on the
parameters. We cannot afford to compute the mode of list t for every possible value of t. What we want instead is
to state the following fact: “if t is duplicable, then list t is duplicable”.

Having this would allow us to compute the fact for list once and for all; then, any time we need to determine
the mode of list t, we merely need to look up the fact associated to list, and check what conclusion the mode of t
allows us to draw.

8.5 Facts

Facts are used all throughout the various rules (type-checking, modes, signature ascription). The present section
formally defines facts; describes what it means for facts to be correct; describes how to present fact computation
as a fixed point computation on a lattice.

Fa
ct

In
fe

re
nc
e.

ml

Syntax of facts

The syntax of facts is presented in Figure 8.8. A fact is always parameterized over a set of formal variables Y⃗which
represent the formal parameters of a type application. Facts are computed for data types and alias definitions;
they are user-provided for abstract types. We discussed the notation earlier (§8.4), and introduced a more con-
cise notation which identifies a fact f with a map H from conclusions (modes) to hypotheses; the notation also
identifies a hypothesis with a map from formal parameters to modes.

The general form of a fact is a quantification ∀(Y⃗ : κ⃗), where κ⃗ matches the expected kinds of the type applica-
tionX Y⃗we are considering. Thequantification is followed by a conjunction of implications. For each implication,
if the hypotheses are satisfied, then the conclusion is a valid mode for X.

In the rest of the discussion, we focus on the analysis of a single typeXwhose formal parameters are Y⃗ : κ⃗; we
thus omit the universal quantifications and consider our judgements to be parameterized over the formal variables
Y⃗.

A trivial fact that any type X enjoys is: “true⇒ affine” (quantification omitted for brevity). That is, for a fixed
set of parameters Y⃗, facts form a upward-closed semi-lattice, whose⊤ element is “true⇒ affine”.

We assume facts in the lattice to be total, that is, to be a conjunction of exactly four implications, one for each
possible mode. Adopting the “map” view, this means the map from modes to hypotheses is total. Ensuring a fact
is total is easy: we just need to extend its conjunction with implications of the form “false ⇒ m” for the missing
modes m⃗. As mentioned earlier, when writing a fact, as in the list example above, we omit the implications whose

112

8.5. Facts

premise is false.
We also assume our hypotheses to be total, that is, to either have exactly one clause of the form m Y for each

Y. This is not a restriction: one can always request affine Y without loss of generality. We then define true to be a
synonym for∧∧ (affine Y⃗) and false to be a synonym for∧∧ (⊥ Y⃗).

Operations on the facts lattice

The following two operations allows us to compute the conjunction of hypotheses ∧∧ mY, where mY is called a
clause.

Definition 8.4 (Conjunction of hypotheses). The conjunction of hypotheses h∧h′ is defined as the pairwise conjunc-
tion of clauses. That is, adopting the map view, (h ∧ h′)(Yi) = (mi ⊓ m′

i).
Hypotheses are total, meaning that the conjunction of hypotheses is always defined.

The conjunction of clauses “goes down” on the mode lattice: for instance, if we demand that a parameter be
both affine and duplicable, then we need the strictest (i.e. lowest) mode of the two for the parameter, that is,
duplicable ⊓ affine = duplicable.

This definitionmakes sense: expanding the definitions of true and false, one gets h∧false = false and h∧true =
h.

Being able to compute h ∧ h′ allows us to define a join operation on the lattice of facts.

Definition 8.5 (Join operation). We define the join operation⊔ on our lattice as follows. Adopting the map view:

(f ⊔ f′)(m) = (f(m) ∧ f′(m))

We also need a meet operation for our lattice. Indeed, the grammar of types features the conjunction of a
mode hypothesis and a type, written (t | mX). During the traversal of a type, we maintain an environment of
facts F; this environment needs to be refined to take into account the new hypothesis for X.

I mentioned earlier that intutively, assume performed a meet on the mode lattice. F, however, contains facts:
we thus need to define the corresponding meet operation:

(f ⊓ f′)(m) = (f(m) ∨ f′(m))

The disjunction of hypotheses is, however, not defined. Indeed,our hypotheses are made up of conjunctions, and
do not handle disjunction. We therefore define the “meet” operation on our lattice only in the case where one of
the arguments is a constant fact.

Definition 8.6 (Meet operation). Assuming that f1 is a constant fact (i.e. is made up of implications of the form
false⇒ m or true⇒ m), we define the “meet” of f1 and f2 to be:

(f1 ⊓ f2)(m) =

{
f2(m) if f1(m) = false

true⇒ m if f1(m) = true

This is not a restriction: the grammar of types only allows for mode hypotheses over a type variable, meaning
that we always compute the meet operation between a fact F(X) and a constant fact, which is well-defined.

Definition 8.7. Now that the meet operation is properly defined, we can present the definition of assume.

assume(F,m X) = F[X 7→ F(x) ⊓ constant(m)]

Another operation I mentioned earlier is extend.

Definition 8.8 (Extend operation). If X ̸∈ F, then:

extend(F,m X) = F[X 7→ constant(m)]

113

8. Type-checking Simple Mezzo

Correctness of a fact environment

A fact environment F maps a type t to a fact f, that is, F(t) = f. We define what it means for F to be correct with
regard to a specific type t. There are three forms of facts for t:

• the type enjoys no special fact, meaning that the only implication with a non-false premise is true⇒ affine:
such a fact is always correct, meaning we have nothing to check;

• the type is duplicable, meaning that it enjoys an implication of the formm1 Y1 ∧ . . .∧mn Yn ⇒ duplicable,
a trivial implication true ⇒ affine, and that all others implications have a false premise (a type cannot be
both duplicable and exclusive): in this case, we only check the non-trivial implication;

• the type is exclusive: this case is similar to the duplicable case.

The rule for the correctness of a fact environment with regard to t thus checks a single implication, where the
conclusion m is either duplicable or exclusive.

Facts-Correct-T
F(t) = m1 Y1 ∧ . . . ∧ mn Yn ⇒ m

∀⃗t, (∀i, ti is mi)⇒ every unfolding A {⃗f : u⃗} of t t⃗ is m
F is correct with regard to t

The check is co-inductive: we assume from the start that the fact f holds for t; next, we also assume that the
hypotheses for the effective parameters t⃗ hold. We check that for each branch of the data type, the mmode holds,
meaning that the fact for t is correct.

Definition 8.9. A fact environment F is correct if it is correct with regard to every parameterized type t.

A fact environment that is trivially correct is that which assigns constant(affine) to every type. This is, most of
the time, not the best fact environment F, though.

The “best” fact environment F is that which assigns the lowest possible fact to each parameterized type. We
have no clue, however, as to how one can compute the best fact for t. This is the purpose of the next section: we
present a procedure that infers the “best” fact f for a type t, that is, the smallest element f in the fact lattice such
that F[t 7→ f] is correct with regard to t.

Fact inference

We introduce an inference judgement of the form F ⊢ fact(t) = f, meaning that if F contains facts for other data
types, then the smallest fact we can infer for t is f. For groups of mutually recursive data type definitions, the
type-checker ofMezzo leverages this procedure and determines the smallest fact for each type, through the use of
a fixed-point computation.

Implicitly, the fact inference procedure is parameterized over the set of formal parameters Y⃗ of the type whose
fact we are currently inferring. That is, the judgement should be written⊢Y⃗. We omit the subscript for readability.

The distinguished nature of the variables Y⃗, compared to other variables, is conveyed by the special fact that
they enjoy.

Definition 8.10 (Fact for a parameter). If Y is a parameter of the type whose fact is currently being inferred, then the
fact for Y is:

parameter(Y) = mY⇒ m

Thismeans that we have control over Y: we can pick a mode for the formal parameter Y, which will in turn be
the mode of the type Y.

One way to compute the best F is to take F0 to be the fact environment which assigns constant(⊥) to each
parameterized type, then perform a fixed point computation using the monotonous iter function.

Facts-Initial
F0 = t⃗ 7→ ⊥

Facts-Iter
F′ = F[⃗Y 7→ parameter(Y⃗)] F′ ⊢ fact(⃗t, f⃗)

iter(F) = F[⃗t 7→ f⃗]

114

8.5. Facts

Fact-Unknown
F ⊢ fact(unknown) = duplicable

Fact-Dynamic
F ⊢ fact(dynamic) = duplicable

Fact-Singleton
F ⊢ fact(=x) = duplicable

Fact-Arrow
F ⊢ fact(t→ u) = duplicable

Fact-Var

F ⊢ fact(X) = F(X)

Fact-App
F(u) = f0 F ⊢ fact(⃗v) = f⃗

f = compose(f0, f⃗)
F ⊢ fact(u v⃗) = f

Fact-And
F′ = assume(F,m X)

F′ ⊢ fact(t) = f
F ⊢ fact((t | m X)) = f

Fact-Forall
F′ = extend(F,⊥ X)

F′ ⊢ fact(t) = f
F ⊢ fact(∀(X : κ) t) = f

Fact-Exists
F′ = extend(F, affine X)

F′ ⊢ fact(t) = f
F ⊢ fact(∃(X : κ) t) = f

Fact-Tuple
F ⊢ fact(ti) = fi fi(duplicable) = hi

F ⊢ fact((t1, · · · , tn)) = h1 ∧ . . . ∧ hn ⇒ duplicable

Fact-Concrete-X
A is a constructor of X

t is exclusive

F ⊢ fact(A {⃗f : t⃗}) = exclusive

Fact-Concrete-D
A is a constructor of X

F ⊢ fact(ti) = fi fi(duplicable) = hi
F ⊢ fact(A {⃗f : t⃗}) = h1 ∧ . . . ∧ hn ⇒ duplicable

Fact-Bar
F ⊢ fact(t) = f1 F ⊢ fact(P) = f2

F ⊢ fact((t | P)) = f1 ⊔ (f2 ⊓ constant(exclusive))

Fact-Empty
F ⊢ fact(empty) = duplicable

Fact-Anchored
F ⊢ fact(t) = h⇒ exclusive ∧ ı⃗

F ⊢ fact(x@ t) = ı⃗

Fact-Star
F ⊢ fact(p) = f1 F ⊢ fact(q) = f2

F ⊢ fact(p ∗ q) = f1 ⊔ f2

Figure 8.12: Fact inference

The iter function relies on the rules defined in Figure 8.12. Thefinal environmentFobtained via this procedure
is correct (Definition 8.9).

Lemma 8.11 (Existence and unicity). Given a type t, there exists a unique fact f that satisfies fact(f) = t as well as:

∀f′.fact(f′) = t⇒ f ≤ f′

The fact environment F obtained via the fixed-point computation finds the unique, smallest fact for every type
t.

Let us briefly comment the fact inference rules, which are exposed in Figure 8.12. For brevity, we write
duplicable instead of constant(duplicable).

The inference procedure is called via Facts-Correct judgement; we infer a fact in an extended environment
F′, where the “best” fact is assigned to the type’s parameters. Therefore, rule Fact-Var consists in a mere lookup
in the environment. Rule Fact-And refines the current fact for a type variable using the “meet” operation on
the lattice of facts. Rule Fact-Tuple only has one non-trivial conclusion: a tuple is duplicable if all its compo-
nents are. There are two rules for concrete data types. Rule Fact-Concrete-X tells that a concrete data type
that “belongs” to a mutable data type is exclusive. Rule Fact-Concrete-D is for constructors that belong to
an immutable data type; this rule is analogous to Fact-Tuple. Rule Fact-Anchored removes any implication
whose conclusion is X, as the “p is exclusive” judgement has no meaning when p is at kind perm. Rule Fact-Bar,
conversely, extends the fact for the permission with a exclusive constant fact, so that the resulting conjunction of a
type and a permission can be seen as exclusive if the type itself is.

Rule Fact-App is slightly more involved, and requires us to explain the compose function, which relates to-
gether the fact of the data type currently examined, and the pre-computed fact for another data type. Let us take

115

8. Type-checking Simple Mezzo

inv

bi

contraco

Figure 8.13: The variance lattice

an example before formally defining compose. We consider the following data type definition:

data listpair Y Y′ = ListPair {listpair : list (Y, Y′)}

The initial fact for “Y” (resp. “Y′”) is “parameter(Y)” (resp. “parameter(Y′)”). Thus, the inferred fact for “(Y, Y′)”
is “duplicable Y ∧ duplicable Y′ ⇒ duplicable”. Besides, assuming the environment F contains the inferred fact for
list already, we have:

∀Z.fact(list Z) = duplicable Z⇒ duplicable

Thevalueof the formal parameter “Z” for list is “(Y, Y′)”. Therefore, weneed “(Y, Y′)” tobeduplicable for “list (Y, Y′)”
to be duplicable. Knowing that:

fact((Y, Y′)) = duplicable Y ∧ duplicable Y′ ⇒ duplicable

we find that “duplicable Y ∧ duplicable Y′” is a sufficient condition for “list (Y, Y′) is duplicable” to hold. This is
also a necessary condition. Therefore, we infer that, inside the definition of listpair, the fact for “list (Y, Y′)” is
“duplicable Y ∧ duplicable Y′ ⇒ duplicable”.

Definition 8.12 (Fact composition). We consider a type application “X T⃗”. Assume that F(X) = ∀Z⃗.fX”, and that
fact(Ti) = fi. Then:

compose(FX, f⃗)(m) = f1(FX(m)(Z1)) ∧ . . . ∧ fn(FX(m)(Zn))

Taking our earlier example where X = list, we have flist = ∀Z.duplicable Z ⇒ duplicable and the fact for the
argument of the type application is f1 = duplicable Y ∧ duplicable Y′ ⇒ duplicable.

For m = duplicable, we have: Flist(duplicable)(Z) = duplicable. We then take f1(duplicable) = duplicable Y ∧
duplicable Y′. Seeing that there is only one argument, the result of compose is thus duplicable Y ∧ duplicable Y′ ⇒
duplicable.

Implementation

Fact inference is implemented using Fix [Pot09].

8.6 Variance

Definition of variance

Variance is a standard notion in programming languages equipped with parameterized data types. In the context
of ML with subtyping (such as in, say, OCaml), we say that a type T is covariant with respects to formal variable
X if u1 ≤ u2 ⇒ [u1/X]T ≤ [u2/X]T. Other possible values for variance, besides covariant, are contravariant,
invariant and bivariant. These values form a complete lattice (Figure 8.13) equipped with meet (∩) and join (∪)
operations.

Va
ri
an

ce
.m
l Variance is, just like “is duplicable”, a co-inductive judgement. The definition of variance relies on subtyping,

and the subsumption relation relies on variance information (CoApp): the two are mutually recursive.
We introduce a variance environment V, which maps a data type D and an index i to one of the four possible

variances (Figure 8.14), denoted by the meta-variable v. We prefix the subtyping and subsumption relations with
a variance environment V, and write: V ⊢ P ≤ Q.

116

8.7. Signature ascription

V(D, i) = v ≜ ∀T unfolding of D X⃗, v(T,Xi,V)

co(T,X,V) ≜ ∀u1, u2,V ⊢ u1 ≤ u2 ⇒ V ⊢ [u1/X]T ≤ [u2/X]T
contra(T,X,V) ≜ ∀u1, u2,V ⊢ u1 ≤ u2 ⇒ V ⊢ [u2/X]T ≤ [u1/X]T

bi(T,X,V) ≜ ∀u1, u2,V ⊢ u1 ≤ u2 ⇒ V ⊢ [u1/X]T ≡ [u2/X]T
inv(T,X,V) ≜ ∀u1, u2,V ⊢ u1 ≤ u2 ⇒ true

Figure 8.14: The variance environment and the variance predicates

The informal notation for CoApp can be replaced with a more formal one.

CoAppFormal

Ti
V(D,i)
≤ T′

i

x@D T⃗ ≤ x@D T⃗′

Computation of variance

Just like with the “is duplicable” predicate, we do not want to recompute variance on-the-spot, and wish to have
the information readily available for each data type. Even if we did, just like fact inference, for lack of a co-inductive
hypothesis, we would fail to infer proper variance for data types.

Formally, we want the best variance V, that is, the smallest relation that satisfies rules of Figure 8.14. By
smallest, we mean that it assigns the lowest possible v to each couple (D, i).

This relation can easily be computed using a fix-point computation. This is performed using F. Pottier’s Fix
library [Pot09]. Mapping the variance computation onto Fix’s interface has been covered by a series of blog
posts [SP14a, SP14c, SP14b]. I wrote the part about variance.

Since this is a classic textbook analysis, I do not detail any further this part.

8.7 Signature ascription

Mezzo is equipped with a basic module systemwhich offers qualified names and type abstraction. There are a few
checks required to make sure an implementation satisfies the mandatory interface. Interfaces.ml

Duplicable exports Mezzo imposes the restriction that only duplicable items may be exported. To understand
this restriction, let us imagine for a minute that we do not have the restriction, and let us see what kind of verifi-
cations would be needed to ensure soundness.

Exporting an affine item x from a module M is dangerous: since two modules N and N′ may both re-export x
under n::x and n’::x, a module O which imports both N and N′ may thus have two copies of a non-duplicable
permission.

A way to ensure soundness would be to ensure that type-checking N leaves intact the interface of M, that is,
does not consume or mutate anything from M. An early version of Mezzo enforced this: after checking a module
N, Mezzo would check that for every module M that N depends on, M could still be checked against its interface.

This guarantees that parallel composition of modules is possible, and that type soundness does not depend
on the initialization order of modules.

If we were to allow any sort of exports, then additional implementation difficulties would arise. Consider the
following situation:

(* export.mz *)

data mutable t = T

val x = T

val y = x

(* export.mzi *)

abstract t

117

8. Type-checking Simple Mezzo

val x: t

val y: t

In order to properly reject this module, we need to take the final permission P obtained after type-checking
the mz file, then take permissions out of P as we step through the various items in the mzi file, so as to make sure
one can not obtain x@ t twice. This is extra complexity.

Since no one ever cared to export non-duplicable items, we removed the feature from the language.

Checking values If the interface exports val x: t, then we must check that there exists, in the permission P
available after type-checking the implementation, a permission x@ t′ ≤ x@ t. We must also check that t is
duplicable.

Checking type definitions Any type definition (abstract, alias or data type) may be made abstract.

• the fact exported in the interface, if any, must be a consequence of the fact from the implementation;

• the variance advertised in the interface, if any, must be less precise than the one in the implementation.

Lacking any fact annotation, a type is assumed to be affine (the top fact). Similarly, lacking any variance annota-
tion, a type is assumed to be invariant for all its parameters (the top variance).

In the case that either a data type or an alias definition is exported “as is”, the definitions must be syntactically
equal in the interface and the implementation.

8.8 Differences between SimpleMezzo and CoreMezzo

I have presented the formalization of Simple Mezzo; this is the language that the rest of the dissertation uses to
formally reason about Mezzo, and also happens to match what the type-checker manipulates internally. I men-
tioned earlier a more restricted version of Mezzo, named Core Mezzo. This restriction has been mechanically
proved sound [BPP14a]. The present section lists the few differences between the two languages.

New formalization for adoption/abandon

Perhaps the biggest difference is that Core Mezzo features a new, more powerful formalization for adoption and
abandon. We wish to port the current implementation to the new formalization.

New design The formalization uses three new types.

• x @ adoptable guarantees that x has an address in the heap, and is duplicable;

• x @ unadopted guarantees that no other object currently owns x (i.e., the hidden field of x contains the NULL
pointer), and is affine;

• x @ adopts t guarantees that x lives in the heap, and that every adoptee of x has type t; it is affine too.

The run-time representation does not change; the types of give and take do, however, change.

val give: [a] (consumes x: a, y: adopts a | consumes x @ unadopted) -> ()

val take: [a] (x: adoptable, y: adopts a) -> (| x @ a * x @ unadopted)

The x @ adoptable permission is akin to x @ dynamic (even though it may be made available for immutable
blocks as well). The x @ unadopted permission carries, in essence, ownership of the hidden, mutable field: a
separate permission still represents ownership of the regular fields of the block. Finally, the x @ adopts t removes
the need for an “adopts clause” with a distinguished status; the permission also embodies the ownership of all the
adoptees of x.

118

8.8. Differences between Simple Mezzo and Core Mezzo

type adoptable_by (y: value) =

adoptable

type unadopted_by (y: value) =

unadopted

val dedicate [y: value] (consumes x: unadopted) : (| x @ unadopted_by y) =

()

val share [y: value] (x: unadopted_by y) : (| x @ adoptable_by y) =

()

val give : [a] (consumes x: a, y: adopts a | consumes x @ unadopted_by y) -> ()

= give

val take : [a] (x: adoptable_by y, y: adopts a) -> (| x @ a * x @ unadopted_by y)

= take

Figure 8.15: Alternative give and take operators

Restricting adoption in a library This new formalization also allows the user to define restricted versions of the
give and take operations (Figure 8.15), so as to provide greater static safety, hence addressing a common concern
about adoption/abandon (§3.3, “Discussion”).

The types adoptable_by and unadopted_by are to be made abstract via a module interface. This allows the
programmer to make sure some objects are “committed”, and will only ever be adopted by a single adopter for
their entire lifetime, hence ruling out more potential mistakes. tests/adoptable.mz

Figure 8.16 demonstrates this, using our running example of a graph structure.
Implementing this restrictionwas impossible with the former design, since a constructor type embodied both

the ownership of the hidden field and the regular fields. Now, having two separate permissions allows one to
“dedicate” the hidden field, and make sure it will only ever be used for a single adopter.

This new design also allows for writing more generic functions: a function that takes an argument of type
adopts (node a) is applicable not just to a graph, but to any object that adopts nodes (§3.3).

The new design also allows us to get rid of “exclusive” which was, truly, only used for type-checking the give
and take operations. The only slight possible drawback is that expressing nesting (§4.1) becomesmore awkward,
as we no longer can express the “this object is uniquely-owned” idiom. One could possibly use x @ unadopted

for that purpose, but this ties together nesting and adoption/abandon, which are, in theory, orthogonal. What we
would do is probably generate another permissionwhen allocating a newblock, of the form x @ nesting, meaning
that x has a unique owner and hence can nest other objects.

Syntactic sugar Adrawback of the newmechanism is that it requires the user towritemore types. The graph ex-
ample above shows that the user must provide the extra adopts type themselves; this is currently cumbersome, as
it requires a name introduction along with a type/permission conjunction. A possible solution would be to insert
adoptable and adopts permissions in the default case. Another solution would be to introduce a type/type con-
junction, denoted &; that way, the user would merely need to write x @ (node a & unadopted), which alleviates
the syntactic burden. Similarly, in a definition, the user could do data t = (A | B) & adopts u .

This is still very much a work in progress.

Other differences

Data types The current proof of Core Mezzo currently does not feature algebraic data types. (A former, less
modular version of the proof did, however, feature non-parameterized algebraic data types. This proof used inte-
gers instead of user-defined tags, though.)

119

8. Type-checking Simple Mezzo

alias node_of (g : value) =

adoptable_by g

alias nodes_of (g : value) =

list (node_of g)

data mutable node (g : value) a =

Node {

payload: a;

successors: nodes_of g

}

data mutable graph a = (g: Graph {

roots: nodes_of g

} | g @ adopts (node g a))

val g : graph int =

let g = Graph {

roots = nil

} in

(* g @ Graph { roots: Nil } * g @ adopts ⊥ *)

let n = Node {

payload = 0;

successors = nil

} in

(* n @ Node { payload: int; successors: Nil } * n @ unadopted * adoptable *)

dedicate [g] n;

(* n @ Node { payload: int; successors: Nil } * n @ unadopted_by g * adoptable *)

assert g @ adopts (node g int);

share n;

(* n @ Node { payload: int; successors: Nil } * n @ unadopted_by g * adoptable_by g *)

assert n @ node_of g;

g.roots <- cons [node_of g] (n, nil);

n.successors <- cons [node_of g] (n, nil);

give (n, g);

assert g @ graph int;

g

Figure 8.16: The graph example, using the new formalization of adoption/abandon

Primitive references Core Mezzo currently features references as a primitive, for lack of data type definitions.
Primitives are annotatedwith amode (immutable ormutable). Thiswould correspond to two separate definitions
in Simple Mezzo, one for mutable references, and the other one for immutable references.

Other unimportant differences Core Mezzo also does not formalize n-ary tuples, recursive functions, field
overload and separate compilation.

8.9 Reflecting on the design ofMezzo

The initial discussion on related works and languages (Chapter 2) was intentionally general. Now that we have
seen the innerworkings ofMezzo in detail, it seems like the right time for reflecting in greater detail on howMezzo
relates to other languages, type systems and verification tools that have been designed recently.

120

8.9. Reflecting on the design of Mezzo

L³ As I mentioned already (§2.2), L³ [AFM07] shares many of the core concepts of Mezzo. In both languages,
the core idea is to distinguish pointers to an object (the =x type in Mezzo) from the token that embodies the
ownership of the corresponding heap fragment (the x@ t permission in Mezzo). L³ differs from Mezzo in that it
is a low-level language, and does not feature high-level constructs such as n-ary tuples and parameterized algebraic
data types. In that regard, it is closer to Core Mezzo, the language used to perform our proof of soundness.

The Mezzo typing rules can be seen as simpler versions of some rules from L³: we do not need to mention
separate typing contexts for duplicable and non-duplicable values, since the distinction is implicit via the “is du-
plicable” predicate. Also, our rule New does not require generating a fresh existential; in Mezzo, one can always
useDecomposeAny later on. (In L³, theNew rule looks like the combination of these two rules.) Another point
to note is that expression variables can appear in types, thus obviating the need for type-level names.

For the sake of simplicity, the authors of L³ chose to make several constructs appear as first-class values; they
hope that a suitable compiler will be able to remove the computationally-irrelevant parameters. In contrast, our
permissions do not exist at runtime, even in the formalization; one can pack a type along with a permission using
the type/permission conjunction. Similarly, the authors of L³ rely on a swap primitive to implement reads and
writes. This incurs extra run-time operations in the case of reading from uniquely-owned references.

Finally, the authors of L³ design the language around a “pluggable” mechanism for handling aliasing; they
expect additional rules to be provided for the soundness conditions related to thawing. The authors only provide
a trivial mechanism, which says that thawing is safe as long as there is no other variable in scope.

Static regions Static regions have been extensively studied, as I mentioned already (§2.1). Initially seen as
a technical device for inferring lifetimes and generating more efficient code, regions became gradually used for
reasoning about ownership in the presence of aliasing. If I own a region r, then I may freely alias pointers that
“live” in region r, as long as there is a unique capability for region r.

A recurring difficulty has been to allow taking an object out of a region: in a sense, a static region is invalidated
if an object is taken out. Indeed, one cannot take two objects at the same time, unless they are statically proven to
be non-aliases. Most solutions are thus similar to nesting [Boy10]: one can take an object out, but this is enacted
in the type of the region. This means that adoption is permanent and one cannot permanently take an object out
of a region. This is also the point of view adopted by Charguéraud and Pottier [CP08].

Fähndrich and Deline [DF01, FD02] use, in their Vault language, a compile-time token known as a “key”. At
every program point is a held-key set. Allocating a new variable generates a new key; freeing the variable asserts
that the key is held, and deletes it. Functions may consume keys or change the state of keys. Type-checking
is performed in a flow-sensitive manner; loops must be annotated unless the invariant can be inferred using a
heuristic procedure. The type system is similar to the Capability Calculus [CWM99]: keys embody the unique
capability to access a given resource, while program variables may be freely aliased. Syntactic sugar for function
pre- and post-conditions is translated into an internal representation of function types, which is reminiscent of the
translation phase of Mezzo. Existential types along with inductive predicates allow one to encode data structures
containing keys, such as lists and trees.

To deal with aliasing, the authors propose an adoptionmechanism, which allows one to transfer ownership of
the adoptee to its adopter. Once adoptionhas beenperformed, just like in our own adoption/abandon, the adoptee
gets a nonlinear type, meaning the programmer is free to alias the object. The nonlinear type does mention the
“key” (the capability) associated to the adopter.

Operationally, and unlike our own adoption/abandon mechanism, Vault keeps a pointer from the adopter
to the adoptee (Mezzo maintains a pointer in the opposite direction). This is due to the lifetime semantics of
adoptees: in the context of a systems language, having a garbage collector is not an option. The lifetime of the
adoptees is thus tied to the lifetime of their adopter, and freeing an adopter also frees all of the adoptees.

The system offers no way of permanently taking an adoptee from its adopter: rather, a focus construct allows
the programmer to temporarily regain linear ownership of the adoptee using a lexically-scoped alias. The authors
mention a possible autofocus extension that offers more flexibility than the lexical scope and allows the system
to infer calls to unfocus.

While the mechanics may look similar, we believe our adoption/abandon procedure to be more flexible: the
dynamic type is available even before adoption takes place, which has proven useful in the earlier graph example
(Figure 3.14). We can also regain ownership of an object permanently, which is, to the best of our knowledge,
a fresh contribution. This comes, naturally, at the cost of extra run-time operations, and would certainly not be
suited to a low-level programming language. Indeed, there is a run-time cost for takewhich may be unacceptable

121

8. Type-checking Simple Mezzo

in some low-level contexts; moreover, the fact that one can keep x@ dynamic forevermandates the use of a garbage-
collector, which may also be a no-go in some contexts.

Spec# Similar concerns about ownership, pre- andpost-conditions aswell as aliasing appear in verification tools.
Spec# [BLS04, BFL+11] spans several years of development, and aims at providing a sound and modular analy-
sis for real-world programs. Programmers are expected to annotate programs with functional specifications that
are then checked using a mixture of dynamic and optional static checking. Mezzo does not offer the option of
providing functional specifications; an advantage, however, is that we have only one layer, that is, the type system.

Theauthors of Spec#designed a superset of theC# language that authors of programs cangradually opt into. As
they try tomodel an object-oriented, real-world language, they face some problems that we did not have to treat in
Mezzo: inheriting frommultiple interfaceswith conflictingmethod specifications, ormodeling the various usages
of exceptions for instance.

Adding exceptions inMezzowould be tedious: sinceMezzo tracks side-effects, functions would need tomen-
tion all the exceptions they may throw, along with the post-condition associated with each exception. In the case
that the function has multiple throw-sites for the same exception, this means that the post-conditions associated
to the throw sites need to match. We believe that, for the time being, data types have served us well, and that the
lack of exceptions has not been a showstopper.

Some other issues are shared with Mezzo. Methods mention the set of variables they may modify: without
this, static modular verification would be impossible. This is similar to a function in Mezzo that demands per-
missions in its signature. Invariants can be temporarily relaxed using their lexically-scoped expose o construct;
this render further calls that depend on o impossible. An analogous phenomenon appears, though implicitly, in
Mezzo.

data mutable t =

| A { x: ... | pred x }

| B ...

val f (y: t): () =

match y with

| A ->

(* invariant holds *)

...

y.x <- ...; (* breaks invariant *)

...

(* invariant must hold *)

| B ->

...

Manipulating a concrete type is analogous to breaking the invariant held by the nominal type. Type annota-
tions, however, guarantee in the example above that invariants may only be broken locally within f.

Spec# also features an ownership discipline inspired by Ownership Types, where an object owns its field in a
hierarchicalmanner. Spec#does not need to incorporate escapehatches: onemay just not opt in to the verification
methodology for a certain piece of the code.

CaReSL More recently, the authors of CaReSL [TDB13] propose a program logic based on separation logic.
CaReSL properly accounts for both higher-order predicates and higher-order functions, is able to perform refine-
ment proofs, and can model racy programs using a compare-and-swap operation.

CaReSLhas amorepowerful logic thanMezzo, since it features, amongother things, higher-kindedpredicates,
that is, predicates of the form p(x) which refer to program variables of the language. One of their first examples is
a higher-order foreach function. We may write the function in Mezzo (Figure 8.17). In Mezzo however, while we
can write higher-kinded predicates parameterized over terms, we can only quantify on non-arrow kinds, that is,
on permissions p and q, not p x and q x.

The authors introduce “necessary propositions” which are akin to “pure” propositions in separation logic or,
in Mezzo, duplicable permissions. They present an mkSync function which is the equivalent of our earlier hide
example (Figure 3.7). They use a system of states, where each state corresponds to a predicate on the state of an

122

8.9. Reflecting on the design of Mezzo

open list

val rec foreach [a, p: perm, q: perm, r: perm]

(consumes l: list (x: a | p),

f: (x: a | r * consumes p) -> (| r * q)

| r

): (| l @ list (x: a | q)) =

match l with

| Cons ->

f l.head;

foreach (l.tail, f);

| Nil ->

()

end

Figure 8.17: The foreach function from CaReSL, transcribed in Mezzo [TDB13]

object; a thread that claims ownership of a piece of shared data may move it into another state. They prove the
correctness of their mkSync higher-order function using a state-based reasoning on locks.

CaReSL is a program logic: there is, in my understanding, no support for automated reasoning; also, the
language they consider is a core calculus, meaning that the work feels more of a foundational basis for designing
later on user-friendly systems. It shares several concerns with Mezzo, though.

Other related works Gordon et al. [GPP+12] present an extension of C# that offers new ownership qualifiers:
writable (the equivalent of “exclusive” in Mezzo), immutable (the equivalent of “duplicable”), readable and iso-
lated. The last two qualifiers refer respectively to mutable data that is accessible in a read-only fashion, and to a
unique reference into a cluster of objects. These last two qualifiers have no equivalent inMezzo. The key insight is
that one can promote a writable object into a unique one, provided that the input typing context satisfies certain
restrictions. This alleviates completely the need for alias tracking. The system does seem to offer a great deal of
flexibility while requiring very little annotations; accounting for generics, though, seems to require extra technical
machinery.

After the original paper on Separation Logic [Rey02], several tools dedicated to program verification using
separation logic emerged [BCO05a, NDQC07, NR11, HIOP13, BCO04]. These tools, for themost part, operate
on imperative languages, with a limited feature set. Most notably, higher-order is rarely taken into account. The
technical comparison between our own subtraction procedure and the various entailment algorithms from the
literature is to be found in §11.6.

123

Part IV

Implementing
Mezzo

9 Normalizing permissions

9.1 Notations . 129

9.2 Requirements for a good representation . 129

9.3 Prefixes . 130

9.4 Normal form for a permission . 132

9.5 Treatment of equations . 135

9.6 Data structures of the type-checker . 138

9.7 A glance at the implementation . 138

10 A type-checking algorithm

10.1 Typing rules vs. algorithm . 145

10.2 Transformation into A-normal form . 145

10.3 Helper operations and notations . 146

10.4 Addition . 146

10.5 Type-checking algorithm . 147

10.6 About type inference . 149

10.7 Non-determinism in the type-checker . 150

10.8 Propagating the expected type . 151

10.9 A glance at the implementation . 151

11 The subtraction operation

11.1 Overview of subtraction . 153

11.2 Subtraction examples . 154

11.3 The subtraction operation . 156

11.4 Implementing subtraction . 163

11.5 A complete example . 168

11.6 Relating subtraction to other works . 169

11.7 A glance at the implementation . 170

11.8 Future work . 174

12 Themerge operation

12.1 Illustrating the merge problem . 175

12.2 Formalizing the merge operation . 179

12.3 An algorithmic specification for merging . 180

12.4 Implementation . 187

12.5 Relation with other works . 191

12.6 A glance at the implementation . 191

12.7 Future work . 193

126

We made progress since the early pages of this thesis. The reader, hopefully, became ac-
quainted with the various challenges that await the young PhD student trying to design a
better type system (Part I). Their curiosity piqued, the reader got a fairly good preview of
what writing programs in Mezzo looks like (Part II). But what good is a system if not for
the formal rules? Part III provided Greek letters galore. Amajor problem remains, though:
after more than a hundred pages, we still have no idea how to actually type-check a Mezzo
program. This last part tackles the problem of implementing a type-checker for Mezzo.
One first issue is that, given all the subsumption rules that exist (§8.2) for Mezzo, there
are many equivalent ways to represent a permission. Chapter 9 introduces a normalized
representation for permissions, which is suitable for manipulation by a type-checker, and
tames the complexity and profusion of subsumption rules.
Having a normalized representation allows us to sketch an actual type-checking algorithm
in Chapter 10. The algorithm is very high-level and works at the expression level. It clearly
states the permissions that are taken and returned for each type-checking step, which is
an improvement over the declarative rules we saw earlier (§8.3). This algorithm, however,
relies on two key operations, which are detailed in the subsequent chapters.
The first key operation (Chapter 11) relates to frame inference and entailment. These are
crucial issues in separation logic;Mezzo shares the same problems. However, in the context
of functional languages, interesting variations surface: polymorphism, first-class functions
bring extra difficulties related to quantifiers. The quantification over permissions is akin to
second-order logic, whichmakes inferring polymorphic instantiations challenging. Finally,
the fact that some permissions may be duplicable and some others may not be constitutes
the icing on top of the cake.
The second key operation (Chapter 12) relates to the join problem over abstract shape do-
mains. In essence, whenever control-flow diverges, the type-checker needs to compute the
permission that is valid at the “join point”. Some languages chose to require annotations
after every if block; Mezzo has an algorithm for inferring these. Again, the presence of a
powerful subtyping relation, along with quantifiers and polymorphism, makes for an inter-
esting problem.
Equipped with algorithms that can tackle these two key problems, the high-level type-
checking algorithm is happy to proceed, and type-check Mezzo programs.

9. Normalizing
permissions
The various algorithms that I am about to flesh out in the upcoming chapters naturally manipulate permissions.
We thus need a representation for permissions that allows our algorithms to operate efficiently; the representation
should also abstract away some features of the type system, such as the various ways of representing a permission;
the representation should also bewell-suited to a formal discussion: I intend, after all, to prove that the algorithms
are, at the very least, correct.

In this chapter, I start by identifying the properties that a good representation should have, and the require-
ments that a type-checking algorithm places on such a representation. I then devise a normalization procedure,
which allows us to rewrite a permission into a normal form and provides sufficient invariants for a type-checking
algorithm to operate properly. This chapter is only concerned with the normal representation of a permission and
the invariants the representation verifies: the actual type-checking algorithm is the topic of Chapter 10.

This chapter also justifies that the normalization procedure is correct using the subsumption rules of Mezzo
(Figure 8.1), in the sense that it provides a deterministic procedure for applying them. Finally, I briefly mention
how I implemented this representation in our prototype type-checker.

9.1 Notations

Internal syntax Expression snippets are, naturally, written using the surface syntax of Mezzo. Types, however,
even if in monospace font, are now written in the internal syntax, until the end of the thesis, and unless specified
otherwise.

Data type projection We define an additional notation for data type projections. If data type t is defined as :

data mutable? t (X⃗ : κ⃗) = . . . | A {⃗f : t⃗} | . . .

then we define the projection of the type application t u⃗ on constructor A to be:

t u⃗/A = [⃗u/X⃗](A {⃗f : t⃗})

that is, the concrete type for branch Awhere all formal parameters X⃗ have been replaced with the effective param-
eters u⃗ of the type application. This is a more concise notation than the sentence “A {⃗f : t⃗′} is an unfolding of t u⃗”
which we used earlier.

9.2 Requirements for a good representation

The difficulties in type-checking Mezzo programs revolve around two main points: finding an algorithmic pre-
sentation where a type-checking step takes P and returns P′, and coming up with an efficient representation for

129

9. Normalizing permissions

P. Without delving into the details, let us run over a few constraints that the algorithm and the underlying rep-
resentation should satisfy. These will help us design a suitable representation for permissions. The next chapter
will detail the actual algorithm.

• A permission may be represented using several equivalent ways: we have seen several times that one may
decompose a permission z@ (int, int) into z@ ∃(x, y : value) (=x, =y) ∗ x@ int ∗ y@ int, and recompose it.

• Function types can also be represented in various equivalent ways: for instance,

x@∀a, ∀(y : value).(=y | y@ a)→ ()
≡ x@∀a, a→ ()

As a language of ML lineage, Mezzo deals heavily with first-class functions: any type-checking algorithm
should thus be able to deal with either one of the two equivalent representations above without difficulty.

• Conjunctions of the form x@ t1 ∗ x@ t2 may be inconsistent, redundant, or may simplify into another
conjunction (using, for instance, UnifyTuple).

• Quantifiers, both universal and existential, are pervasive in Mezzo. They are either provided by the user or
introduced automatically by the translation from the surface syntax into the internal syntax (Chapter 7).
Should these quantifiers be opened? Is there a particular constraint on the order for opening the binders?

• The presence of universal quantification over types or permissions amounts to second-order logic, thus
making type-checking akin to proof search in this logic. Proper treatment of quantifiers is thus doubly
important (§9.3).

• Mezzo features equations of the form x = y where x and y are variables at kind value; the typing rules
enforce the fact that one may use either x or y indifferently, whenever x = y is present. We need special
provisions to faithfully implement this behavior (§9.5).

• As we saw in the preceding section, several permissions for the same variable may be present in a conjunc-
tion; an algorithm will thus need to explore several possible branches when tasked with a problem to solve.

• Some permissions can be duplicated, while some others cannot: a type-checking operation may thus con-
sume portions of the conjunction while leaving others intact.

9.3 Prefixes

A first issue we need to tackle is that of proper binding. Whenever we performed step-by-step type-checking
of examples (Chapter 3), we wrote permissions where names were implicitly bound. That is, we never actually
specified where x was bound when talking about a “current permission” x @ t. Moreover, many examples of
permission rewriting carefully elide the issue of name binding.

(* x @ Cons { head: a; tail: list a } *)

(* x @ Cons { head = hd; tail = tl } * hd @ a * tl @ list a

Figure 9.1: A sample permission recombination

In the example from Figure 9.1, it is unclear how hd and tl are bound.
The type-checking rules are equipped with an environment K where existentially-quantified and universally-

quantified variables are opened via ∃-elimination and ∀-introduction rules. These variables are all rigid. This
representation is well-suited for declarative rules, but we need more binding structure for properly implementing
a type-checker for Mezzo.

This section examines the question of name binding in amore thoroughmanner and devises a more powerful
notion, called a prefix, that is better suited for the upcoming algorithmic specification of type-checking.

130

9.3. Prefixes

An example

While the present chapter is not about a type-checking algorithm, let me state nonetheless how an algorithm will
want to deal with the classic snippet fromFigure 9.2, which appeared repeatedly under one form or another in the
section about lists (§3.2). This helps justify the design of the “prefix”.

1 (* x @ list a *)

2 match x with

3 | Cons ->

4 let tail = x.tail in

5 let l = length tail in

6 ...

Figure 9.2: Sample excerpt from the list::length function

In order to type-check the Cons branch, the type-checker expands permissions just like in the sample permis-
sion recombination from Figure 9.1.

Now that we have seen the actual subsumption rules ofMezzo, we know that this recombination corresponds
to an application of the DecomposeBlock subsumption rule. This rule introduces existential quantifiers. For-
mally, before line 4, we possess:

∃(hd : value, tl : value).Cons {head = hd; tail = tl} ∗ hd@ a ∗ tl@ list a

In order to type-check line 4 successfully, we want to add tail = tl into the environment. This is achieved by an
instantiation of the type-checking rule Read (Figure 8.5), where t is chosen to be =tl, followed by an application
of the rule Let, where t1 is =tl as well.

We do need, however, to open the existential binders for this to succeed. Otherwise, adding tail = tl would
not make sense, for tl would not be bound.

Rigid vs. flexible

The variable tl is existentially-quantified. In essence, it is not something that we can choose. Therefore, when we
open the binder that corresponds to tl, we bind tl as a rigid variable, that is, a variable that will not instantiate to
something else.

Conversely, in some situations, the type-checker will want to infer the value of a given variable. This hap-
pens, for instance, whenever performing polymorphic function calls (Figure 9.2, line 5). Even in the absence of
user-provided polymorphic quantification, we saw (Chapter 7) that the translation fromMezzo to SimpleMezzo
introduces universal quantifications at kind value.

(* length @ [b, x: value] (=x | x @ list b) -> (int | x @ list b) *)

(* length @ (=?x | ?x @ list ?b) -> (int | ?x @ list ?b) *)

Figure 9.3: Introducing flexible variables for polymorphic function call inference

The declarative rules assume that one always knows when to instantiate a universal quantifier ahead of time.
In practice, though, we need to guess the proper parameter for the instantiation that will make type-checking the
expression succeed. For this inference to happen, we use the standard technique of flexible variables: whenever
we cannot guess immediately the suitable instantiation of a variable, we introduce a flexible variable whose value
will be decided upon later, once we have enough information to properly infer the right instantiation.

In the example from Figure 9.3, the universally-quantified variables b and x are opened as flexible variables,
which are denoted as ?b and ?x respectively. The algorithm then proceeds with matching the argument tailwith
(=?x | ?x @ list ?b). It finally picks ?x = tl and ?b = a.

We introduce prefixes, which keep track of the order in which variables are bound, as well as the nature of the
binding. The prefix keeps track of whether a variable is rigid or flexible, instantiated or not, and of the order the

131

9. Normalizing permissions

q ::= binder
R(x : κ) rigid variable
F(x : κ) flexible variable
F(x : κ = τ) instantiated flexible variable

V ::= nil | q,V a prefix is a list of binders

Figure 9.4: Syntax of prefixes

variables were introduced in. The syntax of prefixes is presented in Figure 9.4. The type variables are introduced
with a kind κ, which, if missing, is assumed to be type.

Definition 9.1 (Prefixed permission). A prefixed permission is written V.P. All free variables in P are bound in V .

Therefore, whenever stepping throughprogrampoints, the type-checker carries aprefixed permissionV.P. This
not only clarifies the fuzzy discipline of binding that we used throughout the examples, but also allows for proper
tracking of flexible variables.

A type-checking step not only transforms the permission into another, but also transform the prefix into an-
other one.

Definition 9.2 (Prefix well-formedness). A prefix is well-formed if, for all instantiated flexible variables

V1;F(X = t);V2

we have V2#t, X#t and FV(t) ⊆ V1.

Definition 9.3 (Prefix refinement). A prefix V ′ is more precise than V , which we write V ′ ≤ V if V ′ can be obtained
from V by:

• instantiating flexible variables,

• adding flexible variables.

Worded differently, V ′ is more precise than V if it contains exactly all the rigid variables from V .

Definition 9.4 (Prefix restriction). If V ′ ≤ V , we define restrict(V ′,V) to be a well-formed subset of V ′ that contains
all the rigid variables from V .

Our type-checker (§9.7) provides an efficient, deterministic implementation of this operation.
In the rest of the discussion, we always manipulate well-formed prefixes. The other notions of refinement and

restriction will be used later on (Chapter 11).

9.4 Normal form for a permission

Aswementioned earlier (§9.2), a good representation should be able to deal with the variousways of representing
a permission. We introduce a normalization procedure for this purpose.

Normalization works on prefixed permissions and comes in two variants: ∀,∗⇝, which applies all rules transi-
tively, except for those marked with ∃⇝, and the converse variant, named ∃,∗⇝, which applies all rules save for those
marked with ∀⇝. The former is called ∀-normalization, while the latter is called ∃-normalization.

The reason why we have two separate relations will be exhaustively commented during §11.3; in short, when
trying tobuild a typingderivation, thehypothesisneeds tobe∃-normalized,while the goalneeds tobe∀-normalized.
Performing this normalization is part of standard proof-search techniques and is a necessary step to obtain good
success rates in our proof search procedure, called subtraction.

The normalization rules are presented in Figure 9.5. Normalization rules are taken to applymodulo equalities,
commutativity and associativity. This matches closely the implementation, where equalities, commutativity and
associativity are handled transparently. Normalization takes care of the following points.

132

9.4. Normal form for a permission

V.x@ (x | P) ⇝ V.x@ t ∗ P (1)
V.x@ (⃗t) ∃⇝ V.∃(⃗y : value) x@ (=⃗y) ∗ y⃗@ t⃗ (2a)
V.x@ A {⃗f : t⃗} ∃⇝ V.∃(⃗y : value) x@ A {⃗f = y⃗} ∗ y⃗@ t⃗ (2b)
V.x@ ∃(X : κ) t ∃⇝ V.∃(X : κ) x@ t (3)
V.x@ (=⃗y) ∗ x@ (=⃗y′) ⇝ V.x@ (=⃗y) ∗ y⃗ = y⃗′ (4a)
V.x@ A {⃗f = y⃗} ∗ x@ A {⃗f = y⃗′} ⇝ V.x@ A {⃗f = y⃗} ∗ y⃗ = y⃗′ (4b){
A is a constructor of t
V.x@ A {. . .} ∗ x@ t t⃗′

⇝ V.x@ A {. . .} ∗ x@ t t⃗′/A (5)

V.x@ ∀(X⃗ : κ⃗) t→ u ∀⇝ V.x@ ∀(X⃗ : κ⃗) ∀(r : value) (=r | r@ t)→ u (6a){
x@ ∀(X⃗ : κ⃗) ∀(r : value) (=r | r@ t)→ u

V.r@ t ∃,∗⇝ Q
∀⇝ V.x@ ∀(X⃗ : κ⃗) ∀(r : value) (=r | Q)→ u (6b)

V.x@ ∀(X⃗ : κ⃗) ∀(r : value) (=r | ∃(X⃗′ : κ⃗′)Q)→ u ∀⇝ V.x@ ∀(X⃗ : κ⃗) ∀(r : value) ∀(X⃗′ : κ⃗′) (=r | Q)→ u (6c)
V.x@ ∀(X : κ) t ∀⇝ V.∀(X : κ) x@ t (7){

P⇝ P′ and Q⇝ Q′

V.P ∗ Q
⇝ V.P′ ∗ Q′ (8){

A is the only constructor of t
V.x@ t u⃗

⇝ V.x@ t u⃗/A (9)

V,F(X : κ = τ),V ′.P[X] ⇝ V,V ′.P[τ] (10){
t is exclusive
V.x@ t

⇝ Vx@ t ∗ x@ dynamic (11)

Figure 9.5: Normalization

No nested permissions All permissions nested inside structural types using (t | P) are floated out into the outer
conjunction (1).

This is the direct application of MixStar. Having this invariant simplifies the reasoning throughout the
present thesis, as we don’t have to consider the case where the permission we are looking for is “stashed”
inside another one. It is also of practical interest, since it simplifies the implementation.

Expanded form (Only in∃-normalization.) All structural permissions, that is, tuples (2a) and constructors (2b)
are expanded, meaning that their fields are all singleton types. For instance, we always expand x@ (int, int)
into

∃(y : value, z : value).x@ (=y, =z) ∗ y@ int ∗ z@ int

These rules are only triggered if the fields are not all singleton types already; that way, these rules are not
applied indefinitely.

Rules (2a) and (2b) are a consequence of DecomposeBlock, DecomposeTuple and ExistsAtomic.
They ensure that every single tuple or record field is given a name. This simplifies the type-checking of field
accesses: type-checking let x = y.f merely amounts to adding z = x to the current permission, where z
is the singleton type for the f field of y.

Existential variables (Only in ∃-normalization.) Existential variables are hoisted out (3) using ExistsAtomic.

The two rules (2a) and (2b) also reveal “hidden” existential quantifiers, which are then hoisted out when
(3) kicks in. (Rules (2a) and (2b) may apply under a ∗ conjunction via (8), for instance, meaning that
existential quantifiers may appear at any depth.) The reason why existential quantifiers must be hoisted is
the topic of §11.3.

No redundant permissions Conjunctions such as x@ Nil ∗ x@ list a, are redundant. We simplify these.

133

9. Normalizing permissions

Rules (4a) and (4b) simplify conjunction of tuple types or constructor types that refer to the same variable
by applying UnifyTuple and UnifyBlock. Rule (5) simplifies a conjunction of a constructor type and
a matching nominal type using UnifyApp. These rules assume an expanded form, which can be attained
by applying rules (2a) and (2b).

Let us illustrate these simplifications with more concrete examples. The following conjunction is consis-
tent:

x@ list a ∗ x@ Cons {head = h; tail = t}

It can be simplified into:

x@ Cons {head = h; tail = t} ∗ h@ a ∗ t@ list a

Another example is
x@ (=y1, =y2) ∗ x@ (=z1, =z2)

which is simplified into
x@ (=y1, =y2) ∗ y1 = z1 ∗ y2 = z2

Function types (Only in ∀-normalization.) All function types have a domain that is a singleton type along with
a permission, which is itself normalized. This results in universal quantifiers being hoisted out of function
domains.

Rule (6a) ensures the domain of a function type is a singleton type along with a permission, rule (6b) en-
sures that the said permission is itself normalized, and rule (6c) hoists existential quantifiers resulting from
(6b) into universal quantifiers over the whole function type (CommuteArrow). Rules (6a) and (6b)
are a combination of CoArrow, along with DecomposeAny. Combined with rule (7), these make sure
universal quantifiers can be hoisted out (ForallAtomic). Again, the subsequent sections will illustrate
the need for these somehow technical rules.

Universal variables (Only in ∀-normalization.) Universal variables are hoisted out (7) via ForallAtomic.

Recursive The recursive normalization (8) is a consequence of CoStar.

Simplify one-branch types Data typeswhichpossess auniquebranchare expanded into the corresponding struc-
tural type (9) via Unfold, which allows for further normalizations, of course.

Substitute instantiated flexible variables We ensure that whenever X instantiates onto τ, all occurrences of X
are replaced with τ (10). (The P[X] notation captures all occurrences of X.) This defines the meaning of
flexible variables. More details about this part appear in §9.5.

Ensure dynamic is always available Whenever a newexclusive permission appear in a permission, whether via an
addition or via a flexible variable instantiation, we need tomake sure that, should tbe exclusive, x@ dynamic
also appears. This is the purpose of rule (11). Naturally, this rule is understood to apply only in the case
where x@ dynamic is not present already.

Lemma 9.5. Assuming no recursive, one-branch data types are defined, both ∃-normalization and ∀-normalization
are strongly normalizing.

Proof. Mezzo does not allow equirecursive types via flexible variable instantiations, and does not allow recursive
alias definitions either. Rule (10) hence terminates. The other rule that may not terminate is (9), when one-
branch data types are defined and are recursive. We assume no such data types are defined. Mezzo currently does
not enforce this¹. 😸

Conjecture 9.6. Normalization is confluent, modulo the usual properties (associativity and commutativity), andmod-
ulo equalities (EqualsForEquals)

¹ Landin’s knot (Figure 4.14) is an example of a legitimate program that uses a recursive, one-branch data type. The discussion in
§11.4 explains the challenges in handling such cases.

134

9.5. Treatment of equations

The current implementation may, in some cases, figure out that a conjunction is inconsistent, because, say,
one has two exclusive permissions for the same variable. The programmer can thus return any type, since the
code fragment is unreachable. This is rarely leveraged by the Mezzo programmer, and has not been formalized
yet.

At this stage, we wish to state some results about normalization. Our subtyping relation≤, however, has no
knowledge of instantiated flexible variables (this is an implementation tool); we thus need to perform all substi-
tutions of instantiated flexible variables before stating subtyping results. This is done using rule (10) of normal-

ization. I introduce a special notation for this, where
(10),∗⇝ means repeated application of normalization rule (10)

until it can no longer apply.

Definition 9.7 (Full substitution). If V.P (10),∗⇝ V ′.P′, then the full substitution V ⋉ P is defined to be V ′.P′.

Theorem 9.8 (Correctness of normalization). Normalization is correct with regard to the subsumption rules of
Mezzo: once flexible variables have been substituted via rule (10), normalization yields a supertype of the original
permission. That is, if V.P ∗⇝ V ′.P′, then:

V ⋉ P ≤ V ′ ⋉ P′

A point to note is that both V ′ and V ′′ may contain rigid and flexible variables; when stating the result, all
variables are taken to be rigid. Intuitively, the subtyping result holds regardless of future instantiation choices for
the flexible variables.

I also need to state an important remark that will be used later on (Chapter 11). Intuitively, applying a non-
reversible rule (e.g. Fold) is a bad idea, as it will lose information about the current permission. We thus need to
ensure that normalization does not weaken our assumptions.

Remark 9.9. Normalization only ever applies reversible rules. That is, if V.P ∗⇝ V ′.P′, then:

V ⋉ P ≡ V ′ ⋉ P′

Proof. The only case that is not trivially reversible concerns rules (6a) and (6b) which rely on CoArrow. This
latter rule can be applied in the converse direction, though, since the transformations that operate on the domain
are themselves reversible. 😸

Normal form for a prefixed permission

Definition 9.10 (Full normalization). We say that a prefixed permission V.P is fully normalized if:

• P has been ∃-normalized, and

• any existential quantifiers have been opened as rigid variables.

The type-checker algorithm (Chapter 10) as well as the subtraction (Chapter 11) and merge (Chapter 12)
operations take, and return, fully normalized permissions. A fully normalized permission is thus the structure our
algorithms work on.

Moving quantifiers into the prefix is an explicit operation that is performed at key steps by the type-checking
algorithm. Normalization thus does not take care of this.

9.5 Treatment of equations

Equations have a special status in Mezzo; we have seen equations between program variables, of the form x = y.
These get a special treatment in the type-checker. Due to the use of flexible variables, which may be instantiated,
there is another kind of equations, of the form F(X = t). This section describes the way equations are handled
and propagated in our representation of permissions.

135

9. Normalizing permissions

Two kinds of equations

A prefixed permission V.P contains two kinds of equations.

• First, equations between rigid program variables, of the form x = y. These equations appear in the current
permission P (“rigid-rigid equations”); they are a feature of our type system.

• Second, equations between a flexible variable and a type, of the form F(X : κ = τ). These appear in
the prefix V of the current permission (“flexible equations”), and are an implementation technique that
facilitates inference of polymorphic instantiations.

This latter variety of equations also coversF(X = y), that is, the casewhere κ is value and τ is a type variable
at kind value. This case corresponds to the inference of a type variable at kind value.

The reason we need to distinguish between two kinds of equations is that not only do they correspond to differ-
ent underlying mechanisms, but they also have different behaviors. Let us take a (slightly artificial) example to
illustrate this.

val _ =

let x = e1 in

let y = e2 in

let f (| x = y): () = () in

let g [a] (z: a): a = z in

let ret = g 1 in

While type-checking the bodyof f, we need to assume that x = y, since this permission is found in the argument
of the function. Once we are done type-checking the body of f, we must forget this assumption, since it is known
to hold only in the body of f.

Conversely, calling g introduces a flexible variableF(X), and returns a permission z@X. In order to success-
fully type-check this function call, the type-checker may pick F(X = int). This equation must be retained, as it
must hold for the remainder of ret’s scope.

Rigid-rigid equations

We now turn to equations of the form x = y, where x and y are rigid variables. For these equations, x and y are
necessarily of kind value². Onemay recall that x = y is syntactic sugar for x@ =y. These equations are thus regular
permissions, and stored in the P part of the current conjunction V.P.

Take, for instance, the typing rule for function bodies (Function). The final permission after type-checking
the body is discarded: this means that rigid-rigid equations are discarded too. This corresponds, in the example
above, to the equation x = y that is discarded upon exiting the body of f.

These equations have a special meaning which is embodied by rule EqualsForEquals. The rule tells us that
we can use both names interchangeably.

We implement this behavior by using an underlying persistent union-find data structure, meaning that our
implementation handles transparently the fact that x and y really are the same thing. In the remainder of the
discussion, we assume that these equations are handled under-the-hood, that is, that EqualsForEqualsmay be
applied at any time, whenever needed. I used this fact already, when I mentioned that the normalization is taken
to operate modulo EqualsForEquals.

One can note, before going further, that in V.P, no scoping problem arises with equations between rigid vari-
ables. Indeed, the variables are always bound within the prefix V; since x = y is a permission in P, both x and y
are always well-scoped.

Flexible instantiations

The other variety of equations stems from instantiations of flexible variables stored in the prefix V , of the form
F(X = t).

² Mezzo does not have GADTs, meaning that the user cannot talk about a type equality between types at kind type.

136

9.5. Treatment of equations

The difficulty lies in ensuring that instantiations are legal, that is, that flexible variables instantiate onto some-
thing well-scoped. What we want, in essence, is for the prefix to be well-formed:

V1;F(X = t);V2 ⇒ V2#t and X#t

Here is an example of an illegal instantiation, where X is the program (type) variable x and t is the program
(type) variable y.

val _ =

let flex x: term in

let y = () in

assert x = y

The let-flex construct has been mentioned in the syntax reference (Chapter 6) and used once (Figure 3.11).
It introduces a new flexible variable at the desired kind.

This example fails, rightly so, with the error message “could not prove equation: ?y = x”. The reason is,
the flexible variable y was introduced earlier than the rigid variable x. Before attempting to prove the assertion,
the current, prefixed permission is thus:

F(y : value),R(x : value). x@ ()

The type-checker cannot pick x = y to prove the assertion, because it would be an ill-scoped equationwith regard
to the order of variables in the prefix. The instantiation above is thus illegal. Accepting it would be unsound for
the type-checker.

We thus check that a flexible variable instantiation makes sense. This is done using levels [PR05]. In the
special case that a flexible variable instantiates onto another flexible variable, the operation is always legal, since
one can, conceptually, always swap the two variables. This amounts to changing the level of the younger variable
to be that of the older one; this is also what happens in the implementation.

Flexible variable substitution is part of normalization, through rule (10). It ensures that we never see an
instantiated flexible variable, and always deal with the type it instantiated to.

Flexible variables are handled using another, different union-find data structure. Flexible variables are thus
handled transparently, in the sense that the rule (10) is applied implicitly in the type checker’s representation.

Flexible equations

We now turn to the special case of permissions of the form x = y (i.e. x@ =y) when at least x is flexible.

• When gaining the permission x = y, we want to enact this fact in the prefix, by changingF(x : value) into
F(x : value = y). Indeed, x is a flexible variable, and gaining the permission means that we just became
aware of an instantiation choice. This choice is incomplete: wemay actually want to pickF(x : value = z),
so as to gain x = z beyond x = y.

• When trying to prove the equation x = y, we may want to choose F(x : value = y) so as to satisfy the
desired goal. Similarly, this is an incomplete choice; we may want F(x : value = z), as x = y may be
available elsewhere.

In essence, equations are always eagerly taken into account into our representation; equations have no first-
class status, since the implementation relies on a union-find structure to materialize equations. Therefore, an
equation is either immediately reflected by a unification operation, or discarded. This is a limitation of the current
implementation.

Since this is a case of flexible variable instantiations, scoping issues arise. When gaining x = y, this permission
may be inconsistent, because the prefix V is of the formF(x : value),R(y : value). Symmetrically, a permission
x = y may be impossible to obtain because pickingF(x = y) is illegal.

Mezzo could mark the environment as inconsistent in the first situation; right now, this is not implemented
and permissions are either dropped or goals fail to be proved.

137

9. Normalizing permissions

9.6 Data structures of the type-checker

The type checker of Mezzo is written in OCaml. Representing a current permission V.P is done using the follow-
ing data structures.

Persistent union-find We use a union-find structure to keep track of equations between rigid variables, that is,
permissions of the form x = y. The union-find is persistent, as it facilitates backtracking and branching on
disjunctions. Moreover, the union-find maps the representative of an equivalence class x to a list of types,
which represent the permissions available for x.

Floating permissions Permissions that are not of the form x@ t are not attached to a program variable; they are
abstract permissions X T⃗. We dub them “floating permissions”, and store them in a separate list³.

Flexible variables Flexible variables from the prefix are implemented using another union-find. We use a sepa-
rate structure in order to propagate flexible variable instantiations : unlike rigid equations, flexible variable
instantiations must be kept throughout the rest of the program. We allow inserting flexible variables at an
arbitrary position in the prefix. The implementation uses a less precise, but easier-to-handle data structure
than the list of binders described formally in the prefix. This has consequences on how the restrict function
is implemented.

Levels In order to efficiently check the non-occurrence premise of a rule such as Instantiation, we use lev-
els [PR05]. A level is a natural number associated to a rigid or flexible binding; comparing levels allows
one to determine whether a variable can be instantiated to another one. This also allows for an efficient
implementation of the “is local” check during merges (Chapter 12).

In essence, the level is bumped every time a newR quantifier is introduced after aF . Instantiating a flexible
variable into a type t is only possible if the level of t (that is, the maximum level of the type variables in it)
is not greater than the level of the flexible variable itself.

Lazy lists The type-checker sometimes needs to explore branches; we use streams, in the form of lazy lists, to
represent a lazy set of solutions. We have heuristics (§11.4) that make sure the first choice in the list is,
most of the time, a solution to the type-checking problem we were trying to solve. That way, we don’t
uselessly force the computation of other paths in the exploration space.

9.7 A glance at the implementation

This section briefly describes the data structures used for representing a “current permission”. I talk a little bit
about how equations between rigid variables and flexible variable instantiations are handled.

Handling of variables

Figure 9.6 presents selected definitions from the Mezzo type-checker. These definitions are located in typ-

ing/TypeCore.ml.
There is one single syntactic category, that is, one single datatype for all types at any kind. There is a separate

category (in typing/ExpressionsCore.ml) for expressions.
Type variables are handled using a locally nameless binding-style, where variables are either open or bound.

A bound variable (line 6) is represented using a DeBruijn index; an open variable (line 7) is represented by a
globally-unique atom.

An open variable may be either rigid or flexible. This is described by the var type (line 12). Both the point

type and the flex_index type represent globally-unique atoms, but they relate to different data structures.

The environment

Figure 9.7 presents selected bits from the definition of environment. The env type (line 5) represents theV.P
“current permission” we described earlier.

³ Equations of the form x@ t where x is flexible could be conceivably stored in this list as well; however, the inference mechanism
does not know how to deal with these. These permissions are thus silently dropped. This yet another limitation of the current approach.

138

9.7. A glance at the implementation

1 type flex_index = int

2 type db_index = int

3

4 type typ =

5 ...

6 | TyBound of db_index

7 | TyOpen of var

8 ...

9 | TyTuple of typ list

10 ...

11

12 and var =

13 | VRigid of point

14 | VFlexible of flex_index

Figure 9.6: Representation of variables

• The state field contains a persistent union-find data structure which corresponds to rigid bindings. The
union-find maps an equivalence class to instances of the binding type. The PersistentUnionFind module
offers the following (abridged) interface:

val find: point -> ’a state -> ’a

val union: point -> point -> ’a state -> ’a state

Per the var type (Figure 9.6), a rigid variable is a point; thus, a client of this code is required to go through
the find function so as to obtain the binding associated to a rigid variable. This ensures that equalities are
handled transparently: whenever two variables x and y are equal (i.e. we have x = y), the corresponding
classes are union’d.

• The flexible field maps flex_index’s to flexible descriptors. Since the flex_index type is int, this is an
IntMap. An earlier version of the type-checker used a list instead of amap; amap is required for implement-
ing some operations on flexible variables which I present later.

• The floating_permissions field keeps track of permissions of the form X T⃗, which cannot be held in the
state field since they are not anchored to any rigid variable.

• The last_binding field rememberswhether the last bindingwas rigid or flexible; this is used in conjunction
with current_level for properly implementing levels⁴.

Variable descriptors

Rigid variables are associated, via the statefield, to a binding (line 31), which ismade upof a var_descr (line 25),
and a rigid_descr (line 25).

Flexible variables, conversely, are only associated to a var_descr if they are uninstantiated, or to a type, if they
are instantiated (line 17). Worded differently, a flexible variable ceases to exist once instantiated, and from then
on only serves as an indirection for a type.

Thus, the var_descr type (line 25) describes information that is relevant for any sort of variable: its kind, its
level, and its fact, if any (variables at kind value have no fact). In the case of a plain variable (e.g. a) its fact will be
a constant mode; in the case of a defined type (e.g. list), it will have an arrow kind and a more complex fact.

The rigid_descr type describes the information attached to a rigid variable. In the case of a variable at kind
value, the information we store is the list of permissions available for it, that is, a list of types (line 40). In the
case of a variable that corresponds to a type definition (e.g. list), we store its definition along with its variance
(line 35).

⁴ An optimization would be to bump the level every time a rigid variable is bound; this would allow us to get rid of the last_binding
field.

139

9. Normalizing permissions

1 type level = int

2

3 type permissions = typ list

4

5 type env = {

6 ...

7 state: binding PersistentUnionFind.state;

8 flexible: flex_descr IntMap.t;

9

10 floating_permissions: typ list; (* At kind perm *)

11

12 last_binding: binding_type;

13 current_level: level;

14 ...

15 }

16

17 and flex_descr = {

18 structure: structure;

19 }

20

21 and structure =

22 | NotInstantiated of var_descr

23 | Instantiated of typ

24

25 and var_descr = {

26 kind: kind;

27 level: level;

28 fact: Fact.fact option;

29 }

30

31 and binding = var_descr * rigid_descr

32

33 and rigid_descr = DType of type_descr | DTerm of term_descr | DNone

34

35 and type_descr = {

36 definition: type_def;

37 variance: variance list;

38 }

39

40 and term_descr = {

41 permissions: typ list; (* At kind type *)

42 }

Figure 9.7: Environment and variable descriptors

Levels and flexible variables

Levels are an implementation technique to make sure that only legal instantiations are performed. In essence, we
want to make sure the following prefix is ruled out:

F(a = b)R(b)...

The instantiation of a is not well-scoped, since b is introduced after it. Allowing this would be equivalent to vali-
dating the (false) formula:

∃a, ∀b, a = b

140

9.7. A glance at the implementation

Indeed, flexible and rigid variables can be understood as universal and existential quantifiers that quantify over
the current permission.

We thus assign to each variable a level, which is a natural integer. The level of a type is thus defined to be the
maximum level that occurs inside of it. A flexible variable can only instantiate onto a type which has a level lower
or equal than its own.

Here is how levels are assigned (as mentioned in the earlier footnote, optimizations are planned; this section
describes the current state of things):

R . . .RF . . .F︸ ︷︷ ︸
level=0

R . . .RF . . .F︸ ︷︷ ︸
level=1

. . .

Subsequent variables of the same nature share the same level. The level is bumped whenever introducing a rigid
variable after a flexible one. This prevents a flexible variable from instantiating onto a rigid that was introduced
later.

This allows, however, a flexible variable to instantiate onto another flexible variable that is introduced later at
the same level. If one wishes to instantiate a into b, one can conceptually rewriteF(a)F(b) intoF(b)F(a) and
pick F(b)F(a = b). This corresponds to swapping two subsequent existential quantifiers in the interpretation
of the current permission.

The current implementation is based on a map that assigns each flexible variable a level. This means that the
order of flexible variables at the same level is not enforced: the conceptual swapping between F(a) and F(b)
transcribes into no operation at run-time. The variables merely happen to be at the same level; the instantiation
is thus legal. Conceptually, there always exists an ordering of the flexible variables that yields a well-formed pre-
fix (the occurs-check⁵ guarantees that there are no equirecursive instantiations); this order is never computed,
however. This has consequences for the implementation of restrict, which I present below.

The current_level and last_binding fields of the env type (Figure 9.7) contain enough information to prop-
erly bump the level whenever needed. This could be, however, optimized, as I mentioned earlier.

Inserting flexible variables An operation that we wish to support is inserting a flexible variable before another
flexible variable. The reason for this will be apparent in Chapter 11; in short, we sometimes discover that α needs
to instantiate to, say, (β, γ) with both β and γ fresh flexibles. Adding such a variable does not change the level
configuration: the newly-added flexible variable will share the level of the flexible variable next to it.

Since the prefix is actually represented as a map, this merely amounts to allocating a fresh, globally-unique
flex_index, and making sure that the flexible field of env maps this flex_index to a descriptor with the right
level⁶.

Restricting the prefix Another operation that we need to implement is prefix restriction (Definition 9.4). We
have V ′, a prefix that is more precise than V (Definition 9.3). V ′ has extra binders, either appended at the end
(flexible), or inserted at existing levels (flexible). Here is an example, where extra binders are drawn in red.

V = R . . .RF . . .F︸ ︷︷ ︸
level=0

R . . .RF . . .F︸ ︷︷ ︸
level=1

. . .

V ′ = R . . .RF . . .F . . .F︸ ︷︷ ︸
level=0

R . . .RF . . .FF︸ ︷︷ ︸
level=1

R . . .RF . . .F︸ ︷︷ ︸
level=2

restrict(V ′,V) = R . . .RF . . .F . . .F︸ ︷︷ ︸
level=0

R . . .RF . . .FF︸ ︷︷ ︸
level=1

. . .

According to Definition 9.4, we must exhibit a subset of V ′ that contains all the rigid variables from V . As I
mentioned earlier, the current implementation of our prefixes uses a loose data structure which only tracks the
level of flexible variables, not their exact order. Rather than do a topological sort of our flexible variables and
decide which ones to keep and which ones to drop, the implementation chooses to keep all binders up to the
highest level found in V . This provides a correct implementation of restrict.

Subtle issues may arise. Consider the following situation:

F(a)F(b)RF(c)
⁵which has yet to be implemented by the present author…
⁶This operation was impossible with the previous representation of a prefix with a list: the flex_index’s were indices into the list,

and adding a new element at an arbitrary position would mess up the indices.

141

9. Normalizing permissions

The level of a and b is 0, the level of c is 1.

F(a)F(b)RF(c = (b, b))

We instantiate c onto the tuple type (b, b). This now means that c is transparently substituted with (b, b) from
now on. In particular, if the type-checker tries to unify a with TyVar (VFlexible c), the level check will succeed
since (b, b) is at level 0. If this is implemented carelessly, then we may pickF(a = c): this is, after all, one more
indirection that eventually ends up onto the same type (b, b).

F(a = c)F(b)RF(c = (b, b))

This causes a problem, however, because this prefix is ill-formed. (A practical consequence is that whenwe restrict
this prefix at level 0, c is dropped, and havoc ensues.)

To solve this, the implementation performs path-compression for this prefix: it eliminates the a→ c indirec-
tion, and makes sure that we manipulate instead the following well-scoped prefix:

F(a = (b, b))F(b)RF(c = (b, b))

The value that corresponds to the (b, b) type is, of course, shared.
Another option would be to modify the level of c to 0 and obtain:

F(b)F(c = (b, b))F(a = c)R

This would correspond to Rémy’s style of implementing Hindley-Milner [PR05].

142

10. A type-checking
algorithm

Typing rules were shown in Figure 8.5. As I mentioned earlier (§8.3), the declarative rules give no clue as to how
one can implement a type-checking algorithm. Now that we are equipped with a proper concept of a “current
permission” V.P, I am ready to describe a set of rules that proceed, just like in the examples, in a forward manner
and compute the available permission at each program point.

This flow-sensitive type-checking is unusual for a language in the tradition of ML; classic approaches focus
around type inference techniques in the style of the original algorithm W. Due to the fine tracking of effects that
Mezzo performs, even though unification-based approaches exist for tracking effects, a flow-sensitive approach
seemed natural. In the current state of things, it seems hard to present type-checking in Mezzo as a unification-
based procedure.

The algorithm I present is high-level, and elides two key procedures which are described in the subsequent
chapters. The algorithm is similar, in essence, to the forward procedure that we describe in the examples (Part II).

In order to type-check e, we take an input, prefixed permission V.P, and return a newer permission Q along
with a newer prefix V ′. Unlike the type-checking rules, which return a type, the type-checking algorithm returns
a permission. A type-checking step thus takes as an input a name for the subexpression to be type-checked¹. In
the example below, this name is ret. Naming the sub-expression presents another advantage: it helps performing a
transformation into A-normal form, which facilitates greatly the application of several type-checking rules (§8.3).

Our type-checking judgements are thus of the following form, where we assume ret to be rigidly bound in V .

V.P ⊢ ret = e ⊣ V ′.Q ∗ ret@ t

A thing to note already is that a type-checking step may introduce new rigid variables. There is no particular
relation between V ′ and V . The typing rules use several additional notations which are introduced before the
detailed review of Figure 10.1 in §10.3.

In the present chapter, I assume we know how to perform two operations: subtraction and merging.

• Subtraction extracts a permission Q out of a permission P, while computing the parts that are consumed,
thus yielding a remainder R. Subtraction assumes thatV.P is fully normalized. Subtraction operates under
a prefix, which it may refine. We write:

V.(P⊖ Q) = V ′.R

Subtraction verifies V ′ ≤ V , that is, it may introduce new flexible variables and instantiate some others;
it does not, however, introduce new rigid variables. Substraction also computes a subtyping relation; once

¹ The current implementation uses the opposite convention, and a type-checking step returns a pair of a fresh name and a prefixed
permission. We wish to update the implementation to match the formal presentation.

143

10. A type-checking algorithm

Variable
V.P ⊢ y = x ⊣ V.P ∗ y = x

Annot
V.P⊖ x@ t = V ′.P′

V.P ⊢ y = x : t ⊣ V ′.P′ ⊛ x@ t ∗ y = x

Let
V,R(x : value).P ⊢ x = e1 ⊣ V ′.P′

V ′.P′ ⊢ y = e2 ⊣ V ′′.P′′

V.P ⊢ y = let x = e1 in e2 ⊣ V ′′.P′′

Type-Application
V.P !

= V.P′ ∗ x@ ∀(X : κ) t
V.P ⊢ y = x [u] ⊣ V.P′ ⊛ y@ [u/X]t

Application
V,R(y : value).P !

= V.P′ ∗ ∀(X⃗ : κ⃗) f@ t→ u
V,F(X⃗ : κ⃗).P′ ⊖ x@ t = V ′.P′′

V.P ⊢ y = f x ⊣ V ′.P′′ ⊛ y@ u

Tuple
V.P ⊢ y = (⃗x) ⊣ V.P ∗ y@ (=⃗x)

Constructor
V.P ⊢ y = A {⃗f = x⃗} ⊣ V.P ∗ y@ A {⃗f = x⃗} adopts⊥

Field-Access
V.P !

= V.P′ ∗ x@ A {. . . f = y . . .}
V.P ⊢ z = x.f ⊣ V.P ∗ z = y

Field-Update
A is a mutable constructor

V.P !
= V.P′ ∗ x@ A {. . . f = y . . .}
V.P ⊢ y = x.f← z ⊣

V.P′ ∗ x@ A {. . . f = z . . .} ∗ y@ ()

Tag-Update
A is a mutable constructor B {⃗fB} is defined
V.P !

= V.P′ ∗ x@ A {⃗fA = x⃗} #⃗fA = #⃗fB
V.P ⊢ tag of x← B ⊣

V.P′ ∗ x@ B {⃗fB = x⃗} ∗ y@ ()

Match
V0.P ⊢ y = let pi = x in ei ⊣ Vi.Pi

V0[yd] ⊢ V1.P1 ∨ . . . ∨ Vn.Pn = Vd.Pd

V0.P ⊢ yd = match x with p⃗→ e⃗ ⊣ Vd.Pd

Assert
V.P⊖ Q = V ′.R

V.P ⊢ y = assert Q ⊣ V ′.R⊛ Q ∗ y@ ()

IfThenElse
V[yd].P ⊢ yd = match x with False→ e2 | True→ e1 ⊣ Vd.Pd

V.P ⊢ yd = if x then e1 else e2 ⊣ Vd.Pd

Function
V,R(X⃗ : κ⃗),R(x : value).P⊛ x@ t1 ⊢ z = e ⊣ V ′.Q

V ′.Q⊖ z@ t2 = V ′′._
V.P ⊢ y = Λ(X⃗ : κ⃗)λ(x : t1) : t2. e ⊣ restrict(V ′′,V),R(y : value).P ∗ y@ ∀(X⃗ : κ⃗) t1 → t2

GiveCons
P !
= P′ ∗ y@ A {. . .} adopts t ∗ x@ t′

V.t⊖ t′ = V._ t′ and A {. . .} adopts t are exclusive
V.P ⊢ z = give x to y ⊣

V.P′ ∗ y@ A {. . .} adopts t′ ∗ z@ ()

GiveApp
P !
= P′ ∗ y@X t⃗ X t⃗ adopts u

V.P′ ⊖ x@ u = V ′′.P′′ u and X t⃗ are exclusive
V.P ⊢ z = give x to y ⊣
V ′′.P′′ ∗ y@X t⃗ ∗ z@ ()

Take
P !
= P′ ∗ x@ dynamic ∗ y@ t t adopts u

V.P ⊢ take x from y ⊣ V.P′ ∗ y@ t⊛ x@ u ∗ z@ ()

Adopts
P !
= P′ ∗ x@ dynamic ∗ y@ t t adopts u
V.P ⊢ x adopts y ⊣ V.P′ ∗ y@ t ∗ z@ bool

Figure 10.1: The high-level type-checking algorithm

144

10.1. Typing rules vs. algorithm

flexible variables have been substituted (⋉ appeared in Definition 9.7), the output of subtraction verifies
the subsumption relation introduced earlier (§8.2).

V ⋉ P ≤ V ′ ⋉ (Q ∗ R)

Moreover, V ′.R is fully normalized (Definition 9.10). Subtraction is the topic of Chapter 11.
An additional judgement which operates at kind type is defined:

V.(P ∗ t⊖ t′) ≜ V,R(z : value).(P ∗ z@ t⊖ z@ t′)

• Merging computes thedisjunctionof twonormalized, prefixedpermissionsVl.Pl (“left”) andVr.Pr (“right”).
It returns a prefixed, fully normalized permission that subsumes the two, written Vd.Pd (“destination”).
Moreover, the merge operation needs to know the set of “old” variables that were bound before the dis-
junction, which I write V0. The merge operation also distinguishes the return value associated to the dis-
junction. We assume the variable to be rigidly bound in V0 (that is, before the disjunction). It is passed as
the input of the type-checking algorithm for the left and right expressions. I write:

V0[ret] ⊢ Vl.Pl ∨ Vr.Pr = Vd.Pd

The merge operation satisfies the following properties:

– Vd ≤ V0, that is, it refines the original prefix: intuitively, the merge operation may make some in-
stantiation decisions to provide better results;

– Vl ⋉ Pl ≤ Vd ⋉ Pd, that is, the destination permission is a supertype of the left permission;
– Vl⋉Pl ≤ Vd⋉Pd, that is, the destination permission also is a supertype of the right permission, that

is, it subsumes both.

This presentation evades the issue of instantiation choices local toVl andVr; this is discussed inChapter 12,
which is dedicated to the merge problem.

10.1 Typing rules vs. algorithm

Thereare several keydifferencesbetween the specificationof the algorithm(Figure10.1),which is syntax-directed,
and the declarative type-checking rules (Figure 8.5).

For starters, the form of the rules is not the same. In the algorithmic specification, rules take an input per-
mission and return an output permission, along with a permission ret@ t for the expression that was just type-
checked.

Anotherdifference lies in the treatmentof binders. The implementationusesflexible variables, whichnaturally
do not appear in the declarative rules; they are, after all, an implementation technique. Flexible variables may be
added or instantiated when stepping through the program. The algorithmic specification takes care of this.

The type-checking rules also leave things unspecified: for instance, when reading from a field (Read), the
only requirement is that the type of the field be duplicable. By using a normalized representation, the algorithmic
specification ensures that in such a situation, a singleton type is always used.

Finally, and perhaps more importantly, the type-checking rules allow one to use Frame and Sub at any time;
the algorithmic specification applies permission subsumption at key, controlled steps: when normalizing, sub-
tracting, or merging.

Some choices, however, are still left up to the actual implementation. Section §10.7 reviews the parts of the
specification that are non-deterministic.

10.2 Transformation into A-normal form

The algorithmic specification often writes x or y (that is, program variables) where the syntax of expressions (Fig-
ure 7.7) allows for arbitrary expressions. This allows for a more concise presentation of the algorithm, since one
can easily refer to the permission x@ t rather than inlining the Let rule.

For instance, Field-Access can only type-check x.f. This is not restrictive: if one wishes to type-check e.f,
one can always type-check e first, thus obtaining a fresh name ret for e, then type-check ret.f.

145

10. A type-checking algorithm

This transformation into A-normal form, is conceptually, a pure AST-to-AST transformation. It just so hap-
pens that this is performed on-the-fly when type-checking Mezzo programs. The details of this transformation
are omitted from the rules. One can understand this transformation as an extra set of rules, as I mentioned earlier
(§8.3).

The only important point is that the transformation into A-normal form is performed according to the oper-
ational semantics of Mezzo. That is, the introduction of let-bindings materializes a sequence, that corresponds to
the order of execution. Since types track effects, it is mandatory in order to ensure soundness that the sequencing
be done consistently with the operational semantics. The discussion of individual rules re-emphasizes this point
on the concrete case of Tuple and Constructor.

10.3 Helper operations and notations

Before jumping into a description of the rules, I introduce a few helper notations as well as some extra procedures
that the algorithm leverages.

Discarding the result We may want to assert that a subtraction succeeds, and bind the resulting prefix, while
discarding the remainder. For that purpose, we write:

V.P⊖ Q = V ′._

This amounts to asserting that P ≤ Q. However, since the algorithm operates with a set of flexible variables, we
need to keep the output prefix V ′ since it may contain instantiation choices that make P ≤ Q possible.

Similarly, whenever we want to algorithmically check that t ≤ t′, we can write:

V.t⊖ t′ = V ′._

Duplicable subset We sometimes need to keep only the duplicable parts of a permission. If P ∃,∗⇝ p1 ∗ . . . ∗ pn,
this merely consists in dropping all permissions pi that do not satisfy the “is duplicable” predicate. We write P.

Focusing We often need to assert that a prefixed permission V.P contains, among other things, a permission of
a certain form. Roughly, we need to perform powerful pattern-matching on a permission P to find a permission
of a certain form.

For instance, when type-checking the function call f x, we want to assert that P contains an arrow permission
for f. We write:

V.P !
= V.P′ ∗ f@ t→ u

The extra ! in a superscript denotes that a syntactic matching takes place to find a function type for f.
More generally, if we want to assert that V.P contains a certain permission p, we write:

V.P = V.P′ ∗ p

p should be understood to be a “pattern”, that is, the desired form of the permission that we wish to find. The free
variables in p are taken to be binders, that is, in the example above, t and u may be referred to by other premises.

This “focusing” operation performs an implicit duplication step whenever possible: if p is duplicable, then
P′ = P.

Having this convention simplifies the premises of many rules as we no longer need to state that, should the
focused permission be duplicable, it is also returned in the output permission. This operation, however, remains
non-deterministic; this is discussed extensively in §10.7.

10.4 Addition

Leveraging thenormalizationprocedure, one can implement theadditionof apermissionQ to analready-normalized,
prefixed permission V.P. Additions take place when entering function bodies and when returning from function

146

10.5. Type-checking algorithm

calls.

Addition
P ∗ Q ∃,∗⇝ ∃(X⃗ : κ⃗) R

V.P⊛ Q = V,R(X⃗ : κ⃗).R

Addition consists in ∃-normalizing the new conjunction, and opening any existential binders as rigid variables.
The rule above admits a special-case for equations, which I mentioned in §9.5.

Lemma 10.1. Addition preserves full normalization.

10.5 Type-checking algorithm

The algorithm is presented in Figure 10.1. The details of the transformation into A-normal form are left out. Also,
I omit some obvious well-kindedness premises, such as in Type-Application.

Lemma 10.2. If V.P ⊢ e ⊣ V ′.P′ and V.P is fully normalized, then V ′.P′ is fully normalized as well, i.e. the type-
checking algorithm maintains full normalization.

Proof. Recall that subtraction and merging return fully normalized permissions, and that ⊕ and ⊛ take care of
renormalizing. We essentially need to renormalize whenever dealing with user-provided types (assertions, anno-
tations on expressions or function definitions, “adopts” clauses). These types are written using the surface syntax
and are not in the decomposed form.

Variable adds an equation to an already-normalized permission; this offers no opportunities for further
renormalization, meaning that the output permission is fully normalized (the same goes for Let, Field-Access).
Annot performs renormalization using ⊛ (the same goes for Type-Application, Application). Rules Tu-
ple, Constructor add already-decomposed permissions that refer to a fresh variable, hence preserving full nor-
malization. Field-Update and Tag-Update add the unit permission, which is already decomposed, to a fresh
variable. They also preserve the decomposed property for their x variable. Match relies on the post-condition
of the merge operation to ensure full normalization (the same goes for IfThenElse). Assert, just like Annot,
renormalizes. Functionadds a permission for a fresh variable, that cannot undergo∃-normalization. GiveCons
and GiveApp preserve normalization for reasons similar to Field-Update. Take renormalizes. Adopts adds
the bool type to a fresh variable, meaning no further normalization can occur. 😸

Let us now review the rules.
Variable embodies two key points. First, the program variable x, which formerly belonged to expressions,

now also appears in types. Second, it does not consume any permission from the environment: the rule merely
states that the variable x “is x”. This allows us to decide later on, when trying to match V.P against an annotation
(e.g. when returning from a function body), which x@ t should be consumed from the environment.

Annot checks that the given expression satisfies an annotation. The rule, while seemingly trivial, is interest-
ing. It relies on a subtraction to assert that x@ t can be obtained fromV.P. This subtractionmay need to perform
flexible variable instantiations so as to succeed: the rule thus returns a permission prefixed with a new V ′. An-
other interesting point is that the type annotation t requires re-normalizing (via⊛), since it is user-provided and
certainly can be expanded. Finally, this operation may weaken V.P; if P is x@MNil, and if t is mlist int, then the
subtraction will return an empty remainder, meaning that the output permission for the rule is x@mlist int.

Assert is similar, except that it works on a permission, and returns the unit type.

1 Assertions are useful in conjunction with let flex constructs, to name existential type variables which, due to
∃-normalization, are “auto-unpacked”. We saw an example of this pattern in Figure 3.11. Here is an artificial,
smaller example.

val f (consumes x: { t } t): () =

let flex u in

assert x @ u

147

10. A type-checking algorithm

Upon entering this function body, the user has noway to refer to the type t. Binding a flexible variable, however,
allows them to assert that x @ u holds, which results in the type-checking performing the desired instantiation so
as to obtain:

R(x : value)R(t)F(u = t)

There are multiple choices for u here: u could be unknown or even =x. The type-checker, however, guarantees that,
if possible, neither of these two are selected for the instantiation choice. This is, of course, rather unsatisfactory from
a language-design point of view, and this is an area that we wish to improve in the future.

Let type-checks e1, and assigns the resulting type to the x name. In the case where the left-hand side of the
binding is amore complex pattern, equations are added in the environment, so as to bind each name in the pattern
to the corresponding internal name. We omit the details for this procedure: they are very similar to the rules from
Figure 8.6. Finally, we type-check e2, and assign the resulting type to the initial name.

1 This Let rule is unusual, in the sense that x is not removed from the list of binders after type-checking the whole
expression. That is, x does belong in V ′′.

The reason for this is that the permission y@ t that results from type-checking the let-binding may mention
x. That is, x may appear in t, meaning that it may actually be the case that x does escape! This is handled
transparently: the programmer can no longer refer to x, since kind-checking disallows referring to x outside of its
scope. After escaping, x remains in V as a rigidly-bound, unreachable variable, at kind value.

Application finds a function type for f, performs a subtraction to ensure the argument has the right type, and
performs an addition in the conclusion. There may be several suitable function types: this is discussed in §10.7.
An additional difficulty stems from the fact that the functionmay be polymorphic, i.e. that theremay be universal
quantifiers. We introduce them as flexible variables: we need to guess these types so as to make the function call
succeed. The difficulty, naturally, lies within the machinery of the subtraction, where flexible variables may be
instantiated, subsumption rules applied to synthesize x@ t′, and framing performed on-the-fly to leave the rest of
the current permission untouched.

Type-Application instantiates a (among possibly many) universally-quantified type. This is mostly used
for polymorphic functions. One may also obtain polymorphic values; here is an example.

val x =

let x = MNil in

assert x @ [a] mlist a;

x

The premise of the rule contains an implicit focusing operation, as it is non-obvious whether ∀(X : κ) t is
duplicable or not.

Tuple and Constructor are very concise, since we assume an A-normal form. Let me stress again that in
practice, tuples and constructors are type-checked left-to-right, consistently with the evaluation order of expres-
sions in Mezzo. (The adopts⊥ conclusion in Constructor is useless in the case that A is immutable, since the
rules for adoption and abandon demand that the constructor A be exclusive.)

Field-Access and Field-Update leverage the normalized representation that we adopted earlier, and as-
sume singleton types for the constructor’s fields. This not only satisfies the premise of the actual type-checking
rule, which requires that only a duplicable field may be read, but also preserves the ∃-normalized, expanded rep-
resentation. In a nutshell, these two rules amount to adding and changing equations, respectively.

Tag-Update describes precisely what happens when changing the tag of a constructor. The new constructor
needs to have the exact same number of fields. The resulting type has the fields f⃗B of B, but keeps the types t⃗ that
were there already. (The output type for x is decomposed, and there is no other constructor for x (because A is
exclusive), so no further normalizations can apply: we don’t need to renormalize in the conclusion.)

Match type-checks each branch as if it were a let-binding. The results are then merged into a single resulting
environment. The way we perform this operation is the topic of Chapter 12.

IfThenElse piggybacks on the Match rule. This does not account for the dubious “polytypic” extension I
mentioned earlier, where if-then-else expressions may work for any data type with two branches (§8.3).

Function is a little more involved: when type-checking the function body, we need to restrict ourselves to
the duplicable parts of P (which we write P), for function types are always duplicable in Mezzo. We also need to

148

10.6. About type inference

introduce universally-quantified type parameters as rigid variables, and extend the permission with x@ t1, that is,
the permission that stands for the function’s argument. Once the body has been successfully type-checked, we
perform a subtraction to ensure that the function has the correct return type.

There is no separate rule for Λ-abstractions and λ-abstractions: theFunction rule combines the two together.
This is a reasonable thing to do: Λ-abstractions are not exposed to the user, and the only place where they appear
is when desugaring a function definition. This means that the Function rule can safely assume that whenever
there is a Λ, a λ-abstraction is to be found under them. This makes the type-checking specification easier, since
we leverage the type annotations on the λ-abstraction to determine what is the type we should return.

GiveCons andGiveApp implement the giveoperation. In the casewhere the adopter sports a concrete type,
we need to apply the covariance rule of the adopts clause tomake sure that the type of x and the adopts clause of y
match. The “is exclusive” check is also deferred to the last minute. The reason for this is to allow definitions such
as:

data mutable container a =

| Container { ... } adopts a

In that case, the type-checker cannot check at definition-time that a is exclusive; when performing give and
take operations, though, we can check that the parameter a has been chosen to be exclusive. This pattern is ex-
tremely useful in practice.

We also assert that t ≤ t′: this is important as flexible instantiations may be required for the rule to be applied
successfully. Recall that the Constructor rule states that freshly-allocated blocks have an adopts clause initially
set to⊥, that is, to ∀α.α. Performing a subtraction will properly instantiate⊥ to whatever is suitable.

In case the adopter is the application of a nominal typeX t⃗, wemerely state thatX t⃗ has an adopts u clause, and
try to obtain the said u for x. In both cases, the return type is the unit type.

Take implements the take operation. By “t adopts u”, wemean that t is either a type applicationwhose adopts
clause turns out to be “adopts u”, or that t is a constructor type with an “adopts u” clause. Renormalization is
required in the conclusion since u may be anything.

Adopts is similar.

Conjecture 10.3 (Correctness of the algorithm). The algorithm implements faithfully the declarative rules for type-
checking presented in Chapter 8. That is, if V.P ⊢ y = e ⊣ V ′.P′, and if K is all the variables from V ′ with their
respective kinds, then:

V ′ ⋉
(
K, P ⊢ y : (=y | P′)

)
10.6 About type inference

The type-checking algorithm introduces flexible variables in several situations; when type-checking function calls
(Application), when type-checking a let flex construct (rule not shown); internal procedures (subtraction,
merging) may also introduce flexible variables in the course of their action. This amounts to performing type
inference, since the subtraction algorithm will try to make suitable instantiation choices for the flexible variables,
so as to make the desired operation succeed.

The most salient use-case for flexible variable introduction is the function call: the type-checker introduces
flexible variables and relies on the subtraction operation to come up with suitable instantiations to make the
function call succeed. One advantage is that the user can write “let x = length l in ...” instead of “let x

= length [int] l in ...”, which is, naturally, a huge gain in usability.

1 This is not quite the classic local inference technique. In the local inference style, flexible variables are discarded as
soon as they have been instantiated suitably. Conversely, in the algorithm presented above, flexible variables may
be kept for an indefinite amount of time. Consider the new function from the lockmodule, whose signature is:

val new: [p: perm] (| consumes p) -> lock p

Upon calling this function, a new flexible variable is introduced. Lacking any type annotation or assert state-
ment, and assuming that the resulting lock is unused until the end of its scope, the flexible variable that corresponds
to p will be kept uninstantiated until the end of the current function body or, if defining a top-level value, until the
end of the current compilation unit.

149

10. A type-checking algorithm

The subtraction procedure is not complete, though: a drawback is that in some rare situations, inference will
fail. For these rare cases, the user still has the option to resort to amanual type application (Type-Application),
meaning that user provides the desired instantiation. The Application rule then no longer needs to instantiate
this Λ-abstraction. Mezzo provides syntactic sugar for instantiating a Λ-abstraction under another Λ using its
name, should the user need to instantiate only one of the type variables.

10.7 Non-determinism in the type-checker

The type-checking algorithm, while providing amore concrete specification suitable for implementation, remains
however non-deterministic in several aspects.

• Focusing is a non-deterministic operation, as several matching types may be found. It sometimes happens,
for instance, that several function types are available for the same variable f (Application) [GPP13]. In
this case, the type-checker tries all possible function types; if exactly one succeeds, it commits to this one.
If more than one succeed, it emits a warning and picks an arbitrary one.

• GiveCons also relies on a certain t′ that the algorithm is expected to guess. Our type-checker implemen-
tation works as follows. If the adopts clause for y has never been specified (i.e. is still⊥), the type-checker
demands a type annotation to guess t′. Otherwise, if y already has an adopts clause t, it picks t = t′. Aban-
don operations are delicate and we do not wish for the user to rely on inference or implicit subtyping for
these.

• Type-Application is also non-deterministic, as it focuses one universally-quantified permission, among
possibly many. The type-checker picks an arbitrary permission in this case. This could be improved by
performing the substitution on all matching types.

• For constructor operations (Field-Access, Field-Update, Tag-Update), there may be several match-
ing types. Having multiple constructor types for the same variable, however, means that the environment
is inconsistent, as our normalization procedure simplifies consistent situations. We thus pick an arbitrary
constructor permission for these rules.

• The subtraction operation itself is non-deterministic. An easy way to see this is to consider the simple
subtraction problem below:

F(α : type).(x@ int− x@ α)

This subtraction problem can be solved by picking α = int, but also α = (=x), as the singleton type =x
is always available for x. Subtraction, internally, performs exploration; for type-checking, however, the
algorithm does not keep track of all possible solutions returned by the subtraction algorithm and picks the
“best” one (accordingly to the subtraction procedure).

• Finally, the merge procedure that Match relies on is also non-deterministic and may find several incom-
parable solutions. We detail these difficulties in Chapter 12.

Themost important point to note, perhaps, is that while the subtraction procedure performs exploration, the
type-checker itself does not backtrack. Consider for example a trivial call to the identity function:

val id [a] (x: a): a = x

val _ =

let y = 0 in

id y

The type-checker, when type-checking the call to id, will introduce a flexible variable for a, and subtract y
@ a. The subtraction algorithm will return three possible values for a: int, =y and unknown. The type-checker of
Mezzo, however, will only keep the best solution, that is, the first (int) and proceed, rather than try to type-check
the rest of the definition with each possible value for a.

The main explanations for this behavior is that we want to limit computational costs. Both subtraction and
merging are expensive operations, which performexploration andbacktracking already. If wewere to keep track of

150

10.8. Propagating the expected type

multiple solutions through each program point, large Mezzo programs would be harder to type-check efficiently,
and would bring us even further fromwhat we claim is still a type system. Moreover, errors would be even harder
to explain to the user, as we would need to mention the exponential number of solutions that we explored.

10.8 Propagating the expected type

The Mezzo type-checker features a basic mechanism for propagating the expected type of an expression. The
propagation starts at the function declaration level: the expected return type is propagated down through tuples,
constructors, if-then-else’s, matches and let-bindings. This means that only expressions in terminal position of
function bodies receive the expected type. Type annotations on expressions are also propagated downwards.
There is no propagation backwards, as in bidirectional type-checking; this is something that we wish to explore.

There are two main places in the Mezzo type-checker that leverage that expected type. When performing a
polymorphic function call, after introducing flexible variables X⃗, the type-checker knows the return type of the
function t2; if an expected type te is also available, a subtraction t2 − te is performed. Oftentimes, this allows the
type-checker to make better instantiation choices for the variables X⃗; if these variables appear in the domain of
the function as well, this augments chances that the function call will succeed.

The other situation where the type-checker leverages type annotations is when confronted with a merge op-
eration. Having an expected type makes sure the algorithm provides at least whatever the user asked for: the
expected type is first subtracted from each branch, and the remainders are merged. Concretely, if the expected
type is te, and the type-checker is confrontedwith a disjunctionVl.Pl∨Vr.Pr, then the type-checker first performs
Vl.Pl− ret@ te = V ′

l .P
′
l , thenVr.Pr− ret@ te = V ′

r .P′
r, and finally performsV0,R(ret : value) ⊢ V ′

l .P
′
l∨V ′

r .P′
r =

Vd.Pd. The net result is Vd.Pd ⊛ ret@ te. This behavior is consistent with that of assertions and type annotations,
which specify only a partial type annotation. One cannot conceivably ask the user to annotate the entire universe
of permissions that they expect to possess.

10.9 A glance at the implementation

The Permissionsmodule (in typing/Permissions.mli) exports the following functions:

1 type result = ((env * derivation), derivation) either

2

3 val add_perm: env -> typ -> env

4 val sub_perm: env -> typ -> result

The add_perm function implements the (always) renormalizing addition we saw earlier (§10.4). The sub_perm
function corresponds to the subtraction operation, which we saw but haven’t explained yet. A subtraction returns
a result: it is either a success (Left case), meaning that the caller gets an environment along with a successful
type-checking derivation, or a failure (Right case), meaning that the caller gets a failed derivation.

Derivations are, at themoment, used only for debugging purposes, but one could imagine a trusted (machine-
checked) verifier that takes a derivation and validates its correctness with regard to the subsumption rules of the
Mezzo proof of soundness.

The Mergemodule (in typing/Merge.mli) exports the following function:

1 val merge_envs: env -> ?annot:typ -> env * var -> env * var -> env * var

The first env is the original one. Then follow two pairs of an environment and a variable: these are Pl with
retl and Pr with retr in Match. The function returns Pd with retd. In the case of a n-ary (n > 2) match expression,
sub-environments for each branch are merged pairwise using a left_fold.

The type-checker is located in typing/TypeChecker.ml and leverages thesemodules to build the algorithmwe
described in this chapter. Implementation topics that were not covered in this chapter are: performing substitu-
tions and opening binders, reporting proper error messages, proper let-bindings with patterns.

The type-checker module offers the following interface.

1 val check_declaration_group :

2 env ->

151

10. A type-checking algorithm

3 ExpressionsCore.definitions ->

4 ExpressionsCore.toplevel_item list ->

5 env * ExpressionsCore.toplevel_item list * (Variable.name * var) list

The function takes a group of mutually recursive definitions along with an environment; it also takes the
following toplevel items (type or value definitions). It type-checks the definitions, adds the relevant permissions
in the environment, and properly opens the corresponding binders in the following toplevel items.

152

11. The subtraction
operation
We now turn to subtraction, one of the two basic building blocks of our type-checking algorithm, which I have
mentioned at numerous occasions already.

11.1 Overview of subtraction

A subtraction takes the following form, and assumes that V.P is fully normalized.

V.(P⊖ Q) = V ′.R

The output, prefixed permission V ′.R satisfies the following properties.

• V ′ ≤ V , that is, the output prefix is more precise (Definition 9.3). One can understand this subtraction
problem as a question that we are asking: given the parameters of the input problem (the rigid variables
in V), can you find a suitable instantiation of the flexible variables which makes this subtraction problem
succeed? Should the algorithm succeed, V ′ contains instantiated flexible variables, along with possibly
more flexible variables: it is thus more precise.

• V ′⋉P ≤ V ′⋉(Q∗R), that is, subtraction applies subsumption rules so as to separateP into the desired part
Q and a remainderR. Naturally, wewantR to be as “big” as possible (that is, to contain asmany permissions
as possible or, in terms of≤, to be as small as possible). One thing to note already is that writing V ′ ⋉ P
and V ′ ⋉ Q makes sense: since V ′ ≤ V , all variables from V are also bound in V ′.

The type-checker calls into ⊖: this is the operation that is exposed by the Permissions module in the Mezzo
source code.

This⊖ operation is called the renormalizing subtraction, because it is defined in terms of a more primitive “−”
operation, which will be called “plain subtraction”, or just “subtraction” from now on.

Plain subtraction takes the following form.

V.(P− Q) = V ′.R

The renormalizing subtraction is defined in terms of plain subtraction as follows.

Renormalizing-Subtraction
Q ∀,∗⇝ ∀(X⃗ : κ⃗).Q′ V,R(X⃗ : κ⃗).P− Q′ = V ′.R

V.P⊖ Q = restrict(V ′,V).R

(I explain later on why universal quantifiers on the right-hand side of a subtraction are moved into the prefix as
rigid bindings.) Renormalizing subtraction ∀-normalizes Q. As a consequence, new rigid binders are added into

153

11. The subtraction operation

the prefix. It then calls into plain subtraction, and discards the extra rigid binders from the result using restrict,
hence ensuring that the V ′ ≤ V post-condition is met.

The reason why⊖ re-normalizesQ is that it is one of the pre-conditions of plain subtraction. Indeed, the pre-
and post-conditions of plain subtraction are as follows:

• it requires that V.P be fully normalized,
• it requires that Q be ∀-normalized,
• it ensures that V ′.R is fully normalized,
• it ensures that V ′ ⋉ P ≤ V ′ ⋉ (Q ∗ R).

In essence, the pre- and post- conditions of plain subtraction are the same as full normalization, except that plain
subtraction expects Q to be ∀-normalized. The correctness result for⊖ thus depends entirely on the correctness
of “−”, which is the topic of the subsequent sections.

Subtraction performs several tasks in order to compute V ′ and R.

• It applies subsumption rules on-the-fly tomatch thedesiredgoalQ. For instance, onemaypossessx@ (=y, =z)∗
y@ int ∗ z@ int, and one may want to call f xwhere f demands an argument of type (int, int). Subsumption
rules must be applied to transform the permission into the desired form.

• Subtraction also determines which part of the current permission is consumed by a function call andwhich
part is leftuntouched(this is theRpart). This aproblemknownasframe inference in separation logic [BCO05b].
Several algorithms have been proposed [BCO05a, DP08,NDQC07]. Calcagno et al. [CDOY09], when re-
ferring to this problem, formulate it as δ ⊢ H∗?frame. The problem, within the context of Mezzo, presents
interesting difficulties compared to frame inference (ownership issues, comparison of function types, ar-
bitrary universal and existential quantifiers, arbitrary user-defined inductive predicates, a rich set of sub-
sumption rules, multiple choices for flexible variable choices…).

• Subtraction performs inference of flexible variables, and instantiates them to find a solution to the desired
problem. As we mentioned earlier, there may be several instantiation choices, and subtraction backtracks
and explores multiple branches of the solution space.

These operations are hard to un-tangle. Inference, for instance, will result in a variable being instantiated into a
duplicable or non-duplicable type, which will, in turn, change which parts of P are consumed.

As we saw in Chapter 10, the type-checking algorithm forMezzo leverages subtraction in two places. The op-
eration is usedwhen exiting function bodies (Function), to check that the return type is satisfied (the remainder
is thendiscarded), andwhen calling functions (Application), to compute the part of the current permission that
is consumed by the function call, and the remainder (the frame). Less importantly, subtraction is also used when
checking type annotations and permission assertions.

In this chapter, I explain subtraction using a couple examples. I then formally define subtraction and introduce
a set of algorithmic rules suitable for implementing an algorithm. I then justify why subtraction is correct with
regard to the subsumption rules of Mezzo.

11.2 Subtraction examples

I take the example of the regular map function: it is self-contained, and contains interesting sample subtractions
(Figure 11.1).

Several subtractions take place in the map example. The first one corresponds to the type-checking algorithm
trying to prove that the argument of a function call has the desired type (Application). This situation happens
at line 11. The second example corresponds to the type-checker trying to prove that the function body satisfies
the function’s post-condition (Function). This situation happens twice, at line 13 and line 9.

Function call

At line line 11, a call to f happens. The following variables are in scope: a, b, at kind type; these have been opened
as rigid binders by the Function rule; the same goes for f and l, at kind value. New variables were bound in the
Cons branch: h and t are let-bound, rigid variables at kind value. The prefix for line 11 is thus:

R(a, b)R(f, l, h, t : value)

154

11.2. Subtraction examples

1 open list

2

3 val rec map [a, b] (

4 f: (consumes a -> b),

5 consumes l: list a

6): list b =

7 match l with

8 | Nil ->

9 l

10 | Cons { head = h; tail = t } ->

11 let h’ = f h

12 and t’ = map (f, t) in

13 Cons { head = h’; tail = t’ }

14 end

Figure 11.1: The classic map function

The current permission is made up of a permission for f, along with a refined, expanded (via renormalizing addi-
tion) permission for l:

f@ a→ b ∗ l@ Cons {head = h; tail = t} ∗ h@ a ∗ t@ list a

Per the type-checking algorithm(Figure 10.1), weneed tofind apermission for f that is a function type; wehappen
to possess one, namely f@ a→ b. The function is calledwith argument h. We thus need (per rule Application)
to obtain h@ a from the current permission; in other words, we need to perform the following subtraction:

R(a, b)R(f, l, h, t : value).
f @ a→ b

∗ l @ Cons {head = h; tail = t}
∗ h@ a
∗ t @ list a

− h@ a

Let us sketch an algorithm for performing this subtraction. The goal is h@ a: we can syntactically match h in the
goal with the corresponding permission for h in the hypothesis, that is, in the current permission. Before “taking
h@ a”, we need to determine whether we can save a copy of the permission or not. In this case, the type a is
abstract, meaning that lacking any mode hypothesis, it is affine (when instantiated, a could be anything!). The
permission h@ a is thus affine too: the subtraction consumes the permission and returns the following output.
This final prefixed permission corresponds to V ′.R (the output prefix along with the remainder) in our earlier
description of subtraction (§11.1).

R(a, b)R(f, l, h, t : value)
f @ a→ b

∗ l @ Cons {head = h; tail = t}
∗ t@ list a

Function body

A more sophisticated subtraction takes place when type-checking the whole match expression. Because of the
downward propagation of the expected type I mentioned earlier (§10.8), the type-checker needs to check that
both in the Nil case (line 9) and the Cons case (line 13), the post-condition of the function is met.

155

11. The subtraction operation

In the Cons branch, this gives:

R(a, b)R(f, l, h, t, h′, t′ : value).
f @ a→ b

∗ l @ Cons {head = h; tail = t}
∗ h′ @ b
∗ t′ @ list b
∗ ret@ Cons {head = h′; tail = t′}

− ret@ list b

The subtraction algorithm performs a syntactic matching, again, on ret in the goal. This time, however, the per-
mission in the hypothesis does not syntactically match the permission in the goal. Solving this, however, is easy:
Cons is a constructor of list, meaning that we can strengthen the goal and prove instead:

R(a, b)R(f, l, h, t, h′, t′ : value).
f @ a→ b

∗ l @ Cons {head = h; tail = t}
∗ h′ @ b
∗ t′ @ list b
∗ ret@ Cons {head = h′; tail = t′}

− ret@ Cons {head : b; tail : list b}

This goal canbe further decomposed in three subgoals: showing that the constructorsmatch, and showing that the
head and tail fields possess the right types. The type-checker realizes that ret, in both the goal and the hypothesis,
has the Cons tag. The Cons tag being duplicable, the hypothesis for ret remains, as well as the other two remaining
subgoals.

R(a, b)R(f, l, h, t, h′, t′ : value).
f @ a→ b

∗ l @ Cons {head = h; tail = t}
∗ h′ @ b
∗ t′ @ list b
∗ ret@ Cons {head = h′; tail = t′}

− h′ @ b
∗ t′ @ list b

Thetype-checker then tries tomove forwardbyproving oneof the sub-goals. The type-checker performs syntactic
matching, again, and successfully proves the two remaining sub-goals using the hypotheses h′ @ b and t′ @ list b.
These two permissions, however, are not duplicable, meaning that they disappear.

R(a, b)R(f, l, h, t, h′, t′ : value).
f @ a→ b

∗ l @ Cons {head = h; tail = t}
∗ ret@ Cons {head = h′; tail = t′}

− empty

The subtraction is now finished, and the remainder R appears on the left-hand side. The prefix V ′ also appears at
the top of the subtraction.

In the Nil case, the subtraction is similar, albeit somewhat simpler:

R(a, b)R(f, l : value).
f @ a→ b

∗ l @ Nil
∗ ret= l

− ret@ list b

The algorithm also strengthens the goal and transparently rewrites the hypothesis using the equation ret = l so as
to succeed.

11.3 The subtraction operation

A proof search procedure

Subtraction is very similar to a proof search procedure. The subtraction examples I mentioned earlier (§11.2)
are hand-crafted proof derivations in a certain logic, while the specification I’m about to describe is a procedure

156

11.3. The subtraction operation

for proof search in the same logic. A consequence is that we can reuse the vocabulary from existing work in
logic [LM07] and talk about negative and positive connectors, as well as synchronous and asynchronous phases.
(§11.6 explores the connection with other, existing works in greater detail.)

Negative and positive connectors When considering:

V.(P− Q) = V ′.R

one can think of P as the hypothesis, that is, the “current permission” that the type-checker carries through pro-
gram points. Similarly, one can think of Q as the goal, that is, the thing that we wish to show. In V , the rigid
variables are part of the problem (hypothesis), while the flexible variables must be properly inferred in order for
the problem to succeed (goal). V ′.R represents the remaining hypotheses that were not consumed during the
process.

The behavior of the connectors in Mezzo can be classified according to their polarity. Existential quantifi-
cation, for instance, is a positive (also known as “synchronous”) connector, just like our products (tuples, con-
structors, conjunctions); when in the goal (that is, when performing a right introduction), it decomposes into a
subgoal that require the proof search procedure to make a decision that may have later consequences (that is, this
connector is not right invertible). Conversely, universal quantification, just like our function types, is a negative
(also known as “asynchronous”) connector; when in the goal, it can be handledwithout the need for backtracking
(that is, the connector is right invertible).

The negative and positive natures of quantifiers determine how these quantifiers are moved into the pre-
fix. Existentially-quantified variables in the hypothesis are moved into the prefix as rigid variables: this is the
re-normalizing addition (§10.4). Similarly, universally-quantified variables in the goal will be moved into the
prefix as rigid variables: this is the re-normalizing subtraction (§11.1). This explains why the definitions of the
renormalizing addition and subtraction make sense.

Synchronous and asynchronous phases Normalization only ever applies reversible rules (Remark 9.9): it cor-
responds to the asynchronous phase of the proof search procedure and only introduces rigid variables. Rules ap-
plied during the asynchronous phase have no influence on the rest of the derivation and can be applied in any
order, without backtracking. Worded differently, ∃-normalization applies all the left-introduction rules for posi-
tive connectors while ∀-normalization applies all the right-introduction rules for negative connectors. These are
all invertible rules.

The rules of subtraction, conversely, may strengthen the goal, introduce and/or instantiate flexible variables
or consume permissions from the hypothesis. All of these are non-reversible operations: subtraction corresponds
to the synchronous phase of proof search and is a backtracking procedure that performs exploration of the solution
space. Making a decision during the synchronous phase may influence the outcome of the proof search.

Notations

Focused subtraction In the algorithmic presentation of the subtraction, we often wish to focus the subtraction
on a particular variable x. (This is akin to focusing in a proof search procedure, where a subgoal is picked at the
end of an asynchronous (“normalization”) phase). I write:

V.
(
P ∗ x@ t− x@ t′

)
= V ′.R

This focusing step is analogous to the one used by the high-level type-checking algorithm (§10.3), and also im-
plicitly duplicates (saves a copy) of x@ t in P, if possible.

There is a slight pun related to the notation: the focalized judgement and the regular subtraction judgement
share the same syntax; whenever x@ t appears as in the judgement above, the reader should understand the sub-
traction to be focused on the variable x.

Kind-specific judgement The rules that are about to be presented present a subtraction at kind perm, either
focused or “unfocused”. Other subtractions need to be performed, for instance when comparing parameters of a

157

11. The subtraction operation

type application. I push the pun further, and offer additional judgements at kind value and type. In the case that
the kind of a type is unspecified, the proper judgement is taken to automatically apply.

V,R(z : value).P ∗ z@ t− z@ t′ = V ′.R
V.P ∗ t− t′ = restrict(V ′,V).R

V.P− x@ =y = V ′.R
V.P ∗ x− y = V ′.R

These two extra subtraction judgements do not introduce new rigid variables either in their output prefix. The⊖
judgement is extended in a similar way.

Subtraction modulo AC The subtraction rules are taken to operate modulo associativity, commutativity, and
modulo equations. That is, the atomic permissions in P and Q may be reordered arbitrarily; if an equation x = y
is available,V.(P∗x@ t− y@ t) is understood to rewrite transparently intoV.(P∗x@ t−x@ t). These features
are handled transparently by the implementation; this is discussed in §11.4.

Propagatingflexible instantiations The restrict(V ′,V) functionwasdefinedearlier (Definition9.4). In essence,
it allows to propagate the flexible instantiations from prefix V ′ to prefix V . This function is used throughout the
present chapter whenever I wish to assert that a sub-operation is possible: we are not interested in the actual
remainder, but must remember the instantiation choices that made this sub-operation possible.

Invariants

Remark 11.1 (Proper pre-conditions). Subtraction always calls itself recursively with the right normalization pre-
conditions.

Proof. As I mentioned earlier, normalization does not descend into type application parameters, under quanti-
fiers, and in codomains of arrows. For each of these situations, subtraction recursively calls itself using the circled
versions⊛ and⊖ to make sure both sides are properly renormalized. 😸

Lemma 11.2 (Prefix growth). If V.P− Q = V ′.R, then V ′ ≤ V .

Proof. The Forall and Exists rules directly manipulate the prefix; however, they only introduce flexible bind-
ings. Other rules recursively call onto⊖ or−. 😸

A consequence of lemma 11.2 is that the subtraction does not introduce rigid variables, since the definition
of≤ for prefixes only allows for extra flexible variables, not rigid ones.

Lemma 11.3 (Full normalization). If V.P−Q = V ′.R, where V.P is fully normalized and Q is ∀-normalized, then
V ′.R is fully normalized.

Reviewing the rules

Algorithmic rules The rules of subtraction are presented in Figure 11.2. Just like in the type-checking judge-
ment, an additional set of rules (Figure 11.3) clarifies what happens when variance comes into play. Most of
these rules are syntax-directed; some, however, are non-deterministic and it is up to the actual implementation to
implement strategies, or “heuristics” to determine what behavior it should adopt in such situations.

Most of these rules are focused, that is, they findmatching variables x on both sides, and rely on the goal x@ t′
to find a corresponding x@ t in the hypothesis. In this case, the ∗ connective on the left-hand side implicitly saves
a copy of the permission that is focused (see “Notations” above).

Let me now review the rules.
AppOrVar is somewhat complex. The rule is triggered whenever the root of the application (the t variable)

is the same on both sides.

1 In the case that the application has a non-empty list of parameters, the type t is necessarily rigid (and its variance
known), asMezzo disallows quantifying on variables with higher-order kinds. In the case that the application has
an empty list of parameters (that is, in the case that we are comparing two variables), if one of them is flexible, the
algorithm will unify the two, assuming this is legal. This is an inference decision; these decisions are discussed later
on.

158

11.3. The subtraction operation

AppOrVar
variance(t) = v⃗

Vi.P⊛ ui
vi
⊖ u′i = Vi+1._

V0.P ∗ x@ t u⃗− x@ t u⃗′ = Vn.P

ConsApp
V.P ∗ x@ A {⃗f = y⃗} ⊖ x@ t u⃗/A = V ′.R

V.P ∗ x@ A {⃗f = y⃗} − x@ t u⃗ = V ′.R

FloatingAppOrVar
variance(p) = v⃗

Vi.P⊛ ui
vi
⊖ u′i = Vi+1._

V.P ∗ p u⃗− p u⃗′ = V.P

Tuple
Vi.Pi − y@ t′i = Vi+1.Pi+1

V0.P0 ∗ x@ (=⃗y)− x@ (t⃗′) = Vn.Pn

Constructor
Vi.Pi − y@ t′i = Vi+1.Pi+1

V0.P0 ∗ x@ A {⃗f = y⃗} − x@ A {⃗f : t⃗′} = Vn.Pn

Forall-L
V,F(X : κ).P⊛ P′ − Q = V ′.R
V.P ∗ ∀(X : κ) P′ − Q = V ′.R

Forall-L-Type
V,F(X : κ).P⊛ x@ t− Q = V ′.R
V.P ∗ x@ ∀(X : κ) t− Q = V ′.R

Exists-R
V,F(X : κ).P⊖ Q = V ′.R
V.P− (∃(X : κ)Q) = V ′.R

Exists-R-Type
V,F(X : κ).P⊖ x@ t′ = V ′.R

V.P ∗ x@ t− x@∃(X : κ) t′ = V ′.R

Singleton
V.P− x = x = V.P

Dynamic
V.P ∗ x@ dynamic− x@ dynamic = V.P

Unknown
V.P− x@ unknown = V.P

Empty
V.P− empty = V.P

Star
V.P− Q = V ′.P′

V ′.P′ − Q′ = V ′′.R
V.P− Q ∗ Q′ = V ′′.R

Arrow
V.P⊛ Q⊖ r@ t1 = V ′.P′

V ′.P′ ⊛ t2 ⊖ u2 = V ′′._
V.P ∗ x@ t1 → t2 − x@ (=r | Q)→ u2 = V ′′.P

Flex-Intro
V,F(X : κ),V ′.P− Q = V ′′.R
V,V ′.P− Q = V ′′.R

Flex-Inst
V ′#T X#T V ⊢ T : κ

V,F(X : κ = T),V ′.empty⊛ P⊖ Q = V ′′.R
V,F(X : κ),V ′.P− Q = V ′′.R

Flex-Swap
V,F(X′ : κ′),F(X : κ),V ′.P− Q = V ′′.R
V,F(X : κ),F(X′ : κ′),V ′.P− Q = V ′′.R

Figure 11.2: The rules of subtraction

Variance-Contra
V.P ∗ t′ ⊖ t = V ′._

V.P ∗ t
contra
⊖ t′ = V ′._

Variance-Co
V.P ∗ t⊖ t′ = V ′._

V.P ∗ t
co
⊖ t′ = V ′._

Variance-Inv
V.P ∗ t⊖ t′ = V ′._
V ′.P ∗ t′ ⊖ t = V ′′._

V.P ∗ t
inv
⊖ t′ = V ′._

Variance-Bi
V.P⊛ t

bi
⊖ t′ = V._

Figure 11.3: Variance-dependent subtraction

159

11. The subtraction operation

By kind-checking, the two applications have the same number of parameters and the parameters have the
same kind. In the case that the type has no parameters, the situation is easy to grasp: we are left with a single type
variable, such as in the example below.

R(int)R(x : value).P ∗ x@ int− x@ int

The general case is more complex. A first thing that we want to do is rely on the CopyDup subsumption rule
to save all possible duplicable permissions before recursively comparing the parameters of the type application.
We thus compare the parameters with the hypothesis P, that is, the restriction of P to its duplicable parts.

1 Comparing the parameters with P instead of P would be unsound. Here is an example why:

V.y@ ref int ∗ x@ list (=y)− x@ list (ref int)

The subtraction above must forbidden. The permission on the left describes a list that contains pointers to y, along
with a single permission for y. The permission on the right describes a list of distinct references. In the case that the
list is longer than one, making this succeed would result in two exclusive permissions for the same variable y!

The judgement for comparing type parameters is taken to be the correct judgement depending on the kind:
either the main judgement at kind perm, or one of the auxiliary judgements at kind value or type I introduced
earlier.

Types are compared depending on their variance, using an auxiliary judgement parameterized by the variance
vi of the i-th parameter of t. This is similar to the type-checking judgement.

The remainder returned by the subtraction of parameters i is not re-used for subtracting parameters i + 1.

1 If we did keep the remainder after comparing two parameters, the algorithm would be unsound. Consider:

V.x@ list (a | Q)− x@ list a

Keeping the remainder means that, after performing this subtraction, we obtainV.Q is a remainder. Clearly, if the
list is empty, we should not assume Q to be available afterwards!

The flexible variable instantiations are also arried from subtraction i to subtraction i + 1. We want to com-
pare all parameters using the original environment V0: as we saw above, we are not interested in the remainder
after comparing parameters; we merely want to assert that they are, truly, comparable. It is mandatory, though,
that any instantiation of flexible variable that took place while comparing parameters i be retained for comparing
parameters i + 1 all the way to the final remainder. The⊖ judgement takes care of applying restrict, meaning that
the propagation of flexible variables is built-in, and that any rigid variables that were introduced in the course of
comparing the parameters are discarded. This rule hence ensures the V ′ ≤ V post-condition.

1 Not propagating flexible variable instantiations would be unsound. Consider, for instance:

R(x : value),Fα. x@ t α α− x@ t int ()

The subtraction above would succeed, which, unless t is bivariant in both parameters, is very clearly unsound: α
cannot have two values simultaneously!

Finally, one should note that in order to satisfy the pre-conditions of subtraction, we re-normalize both the
left and right sides.

ConsApp triggers an application of the Fold subsumption rule: in the event that the left-hand side is a con-
structor A of type t, we can strengthen our current goal so as to match the current constructor type. We re-use the
projection notation (§9.1).

FloatingAppOrVar deals with permissions that are not anchored to a particular variable, that is, abstract
parameterized permissions. Just like AppOrVar, it encompasses the casewhere the argument list is empty, which
is that of a type variable with kind perm.

Rules Tuple and Constructor descend into structural permissions. The various well-formedness checks
guarantee that, in the constructor case, the fields match. In the tuple case, however, an ill-typed program may

160

11.3. The subtraction operation

end up comparing tuples with conflicting lengths. The ∃-normalization pre-condition allows us to assume that
all fields for the tuple on the left-hand side are singletons. We then recursively call ourselves, and just like we
mentioned already, chain the premises.

The rules for quantifiers Forall-L, Forall-L-Type, Exists-R and Exists-R-Type are discussed in the next
paragraph.

The next rules Dynamic, Unknown, Empty are standard. The only interesting thing to note is that dynamic
is made “automatically” available via normalization rule (11). It is important for the normalization to take care
of this: if x@ α becomes, via a flexible variable instantiation, x@ t with t exclusive, we need to make x@ dynamic
available as well.

Rule Star is interesting in that it is highly non-deterministic, because of associativity and commutativity.
That is, wemay choose any order for scheduling atomic permissions to be subtracted. The next section covers im-
plementation techniques for dealing with the problem of selecting the “next atomic permission” to be subtracted.

Arrow is perhaps the most powerful rule. We mentioned earlier (§8.2) that one could derive CoArrow2
from HideDuplicablePrecondition. I now give the derivation, as CoArrow2 constitutes the theoretical
justification for the subtraction rule.

If the two hypotheses h1 = (u1 | P) ≤ t1 and h2 = (t2 | P) ≤ u2 hold, and P is duplicable, then:

P ∗ x@ t1 → t2
CopyDup
≤

P ∗ x@ t1 → (t2 | P)
CoArrow,h1,h2

≤

P ∗ x@ (u1 | P)→ u2
Hide
≤

x@ u1 → u2

Thanks to the ∀-normalization pre-condition for the right-hand side of the subtraction, we can assume u1 is
of the form (=r | Q). This allows us to follow the first premise of CoArrow2 and compare (contra-variantly) the
domains using the restriction of P to its duplicable parts, that is, P. (An example that illustrates why this particular
form for u1 is important follows.)

The codomains are not required by normalization to be named: we use the subtraction judgement at kind type
to compare them (co-variantly). Any flexible instantiations that were performed during these two operations are
propagated to the output prefixV ′′. No permission was consumed or created, since function types are duplicable:
we return the original permission P.

Interestingly, and contrary to AppOrVar, the remainder from comparing the domains is carried on to the
comparisonof codomains, even though the remaindermay containnon-duplicable permissions. This corresponds
to an η-expansion rule, and is sound thanks to Eta which is derivable using Frame and CoArrow. A complete
example that leverages the full power of the rule is presented in §11.5.

1 Onemay wonder why P⊛Qperforms a re-normalization since, after all, the right-hand side x@ (=r | Q)→ u2
is ∀-normalized, meaning that Q is itself ∃-normalized (Figure 9.5). The reason is, we want normalization rules
(4a), (4b) and (5) to apply. Worded differently, that P and Q are normalized does not imply that P ∗ Q is
normalized.

Treatment of quantifiers Quantifiers have to be introduced in the right order. To see why, let us consider a few
examples before reviewing the quantifier-related rules.

R(x : value).
(
x@∃a.a− x@ ∃b.b

)
Let us imagine for a second that we do not have normalization, and have instead the natural Exists-L rule, which
opens an ∃ quantifier on the left as a rigid variable (∃ is a positive connector; when in the goal, it transforms into
a universal quantifier, that is, a rigid variable).

Failure
R(x : value),Fb,Ra.

(
x@ a− x@ b

) FlexInstantiation

R(x : value),Fb.
(
x@ ∃a.a− x@ b

) Exists-L

R(x : value).
(
x@∃a.a− x@ ∃b.b

) Exists-R

161

11. The subtraction operation

The derivation above ends with a failure, as instantiating b into a would create an ill-scoped equation. Indeed, we
made a wrong choice by applying Exists-R instead of Exists-L in the first place. This failure could be solved by
always applying Exists-L (and Forall-R) first. This is not sufficient, though. Let us consider a second example
(kinds are omitted, for brevity).

We know for a fact that t → u ≡ ∀(x : value) (=x | x@ t) → u (CommuteArrow, DecomposeAny); we
wish to perform this subtraction, that is, to make sure our algorithm can derive this fact. The subtraction ought
to succeed: taking any x along with x@ a really is the same thing as taking an argument of type a. We assume a
naïve Arrow rule which merely compares the types of the domains, using a placeholder rigid binding z.

Failure
Ra,Rf,Fx,Rz.z@ a− z@ (=x | x@ a)

Ra,Rf,Fx.f@ (=x | x@ a)→ ()− f@ a→ ()
Arrow

Ra,Rf.f@∀x.(=x | x@ a)→ ()− f@ a→ ()
Forall-L

Using the naive rule, the algorithm is stuck as there is no opportunity to apply Forall-R. We end up with an
ill-scoped equality Fx,Rz.z = x which the type-checker is unable to take into account, and discards (§9.5).
Indeed, finding an x such that for any z, we have x = z is impossible, however powerful the type-checker may be.
The z quantifier was introduced too late. This subtraction thus fails as well.

We therefore need to eagerly introduce rigid quantifiers into the subtraction prefix. Looking at rule Arrow, we
need to introduce the rigid variables from u1 before the flexible variables induced by ∀(X⃗ : κ⃗) t1 → t2 (Forall-
L-Type). This is the reason why we extrude existential quantifiers from u1, then hoist them out of the arrow
as universal quantifiers (Figure 9.5). This is the raison d’être of ∀-normalization. More generally, normalization
(Chapter 9) corresponds to the standard asynchronous phase in the proof search literature. The pre-conditions
of subtraction, which are that P be ∃-normalized and Q be ∀-normalized, embody this requirement.

These techniques for introducing quantifiers properly are not a guarantee of completeness; we need, however,
to properly tackle this aspect in order to have better success rates for subtraction operations.

Subtraction therefore never adds rigid variables into the prefix because it never encounters them: normaliza-
tion took care of introducing them already; this is guaranteed by the subtraction’s normalization preconditions.
We thus only need the four rules Exists-R, Exists-R-Type, Forall-L and Forall-L-Type.

1 The rule Forall-L is only ever triggered, say, if a function returns a universally-quantified permission, such as
∀(X : κ) p X where p is an abstract predicate. It is hard to introduce this flexible variable at “the right time”.
Other rules are syntax-directed: they are focused on a variable x and one can figure out the next rule to be applied
by matching on the head constructor of the type t. (We thus know when to introduce a flexible variable, such as in
Exists-R-Type.) In the case of Forall-L, no syntactic hint tells us when to introduce this flexible variable in the
prefix.

Handling of flexible variables Figure 11.2 gives three rules for handling flexible variables. Flex-Intro says
one can introduce a flexible variable at any position in the prefix (in practice, our implementation only allows this
as long as levels are notmodified, without loss of generality). Flex-Swap allows one to swap two flexible variables
at the same level. Flex-Inst defines what happens when we make an instantiation choice for a flexible variable:
all occurrences of the variable are replaced with T, and renormalizations on both sides occur.

These rules are very declarative, and allow the type-checker to instantiate arbitrarily, at any time, any flexible
variable any way they want. This is, naturally, a loose specification, and an actual implementation will take care of
implementing more specific rules for this (§11.7).

Correctness Perhaps the most important result of this section is that subtraction is correct.

Theorem 11.4 (Subtraction correctness). If V.P − Q = V ′.R, then V ′ ⋉ P ≤ V ′ ⋉ (Q ∗ R). In other words,
subtraction is a semi-algorithm for deciding subtyping and computing unused hypotheses.

Proof. The result relies on reviewing the rules, andmaking sure that their specification corresponds to actual sub-
sumption rules from §8.2. The only tricky rule is that for arrow types, which I commented earlier. Rules for
flexible variables also deserve careful review, as they may create ill-scoped instantiation choices; the premises
from Flex-Default-L ensure this does not happen. 😸

162

11.4. Implementing subtraction

SubstEquals1
P = P ∗ x = y V.[y/x]P− Q = V ′.R

V.P− Q = V ′.R

SubstEquals2
P = P ∗ x = y V.[x/y]P− Q = V ′.R

V.P− Q = V ′.R

Figure 11.4: Equational rewriting in subtraction

Flex-Tuple-L
V,F (⃗β : ⃗type)F(α : type = (⃗β))),V ′.

P⊛ x@ (⃗t)− x@ α = V ′′.R
V,F(α : type),V ′.P ∗ x@ (⃗t)− x@ α = V ′′.R

Flex-Constructor-L
V,F (⃗β : ⃗type)F(α : type = A {⃗f : β⃗})),V ′.

P⊛ x@ A {⃗f : t⃗} − x@ α = V ′′.R

V,F(α : type),V ′.P ∗ x@ A {⃗f : t⃗} − x@ α = V ′′.R

Flex-Default-L
V ′#t α#t

V,F(α : type = t),V ′.P⊛ x@ t⊖ x@ α = V ′′.R
V,F(α : type),V ′.P ∗ x@ t− x@ α = V ′′.R

Figure 11.5: Instantiation of flexible variables (-R rules omitted)

11.4 Implementing subtraction

Naturally, the specification we just saw leaves a lot of room for implementation decisions. The present section
reviews the choices left to the algorithm as well as some implementation strategies.

Equations

One thing that was unspecified by the algorithm is the treatment of equations. Actually, two rules were missing
from Figure 11.2 and are shown in Figure 11.4. These rules mean that one can rewrite both the hypothesis and
the goal using any equation available at hand.

As we saw earlier (§9.5), equations are handled transparently via our representation of permissions: the two
rules are thus applied implicitly whenever needed.

Dealing with non-determinism

Thesubtraction algorithm leavesmany things up to the actual implementation. Imentioned a fewof themalready;
the present section reviews the various sources of non-determinism and the actual heuristics used by the type-
checker.

Instantiation choices Figure 11.5 presents a set of more algorithmic rules for instantiating flexible variables.
These rules are triggered by syntactically matching on whatever permission is available for x in the hypothesis.
These rules apply whenever the flexible variable is on the right-hand side; a set of symmetrical rules (omitted)
exist for whenever the flexible variable is on the left-hand side.

These rules are not fully general, and do not consider all possible solutions, as the exploration space is too
large. Our algorithm is thus not complete. One should understand these rules as replacing the loosely-specified
Flex- rules from Figure 11.2 with a more actionable specification.

The two important rules are Flex-Tuple-L and Flex-Constructor-L. Rule Flex-Default-L is applied if
no other rule matches. These two rules say that when trying to instantiate a flexible variable with a tuple type or
a constructor type, one should first break down the flexible variable into a tuple or a constructor, whose fields are
themselves flexible variables.

Doing so is correct. It amounts to introducing fresh flexible variables for the fields (Flex-Intro), then in-
stantiating α suitably (Flex-Inst).

163

11. The subtraction operation

Flex-Default-L is very general too, as we may have the following conjunction, which leads to multiple
choices for applying the rule:

x@ t ∗ x@ =x ∗ x@ unknown

The last two permissions are always available for x: the algorithm is thus always faced with several choices for
applying the rule. The algorithm implements a heuristic, which is to favor instantiating a flexible variable with t if
such a non-singleton t exists. The algorithm backtracks, meaning it will also, eventually, consider other instanti-
ation choices. It is crucial, however, that the choice that usually makes more sense be considered first: lacking a
good heuristic, the type-checker would just explore too many solutions before finding the right one.

1 To see why the heuristics for Flex-Default-L are tuned towards non-singleton types, consider the following
subtraction problem (some intermediary steps omitted):

R(a : type, h, t : value)F(α : type).
h@ a

∗ t @ list a
∗ l @ Cons {head = h; tail = t}

− l@ Cons {head : α; tail : list α}

This is a standard subtraction problem. It pops up, for instance, when type-checking the list::length function,
when the recursive call takes place.

Thealgorithm tries to recursively subtract the head fields, meaning that the following sub-operation takes place:

R(a : type, h, t : value)F(α : type).
h@ a

∗ h@ =h − h@ α

Lacking a good heuristic for Flex-Default-L, if one picks α = =h, the next step of the subtraction is, after
performing substitution:

R(a : type, h, t : value).
h@ a

∗ t @ list a
∗ l @ Cons {head = h; tail = t}

− l@ Cons {head : =h; tail : list =h}

The algorithm then tries to recursively subtract the tail fields, which fails, as the following subtraction cannot suc-
ceed:

t@ list a− t@ list =h

(Avoiding instantiating flexible variables onto singleton types also helps avoiding the “local variable” problem in
§12.4.)

To see why the rule Flex-Tuple-L is important, consider the following subtraction problem (some interme-
diary steps omitted):

R(a, b : type, h, t, x, y : value)F(α : type).
h@ (=x, =y)

∗ x@ a
∗ y @ b
∗ t @ list (a, b)
∗ l @ Cons {head = h; tail = t}

− l@ Cons {head : α; tail : list α}

This is a standard subtraction problem. It pops up, for instance, when type-checking the list::assoc function,
when the recursive call takes place.

Without Flex-Tuple-L, the algorithm would pick α = (=x, =y), which gives:

R(a, b : type, h, t, x, y : value)F(α : type).
h@ (=x, =y)

∗ x@ a
∗ y @ b
∗ t @ list (a, b)
∗ l @ Cons {head = h; tail = t}

− l@ Cons {head : (=x, =y); tail : list (=x, =y)}

164

11.4. Implementing subtraction

The algorithm then tries to recursively subtract the tail fields, which fails, as the following subtraction cannot suc-
ceed:

t@ list (a, b)− t@ list (=x, =y)

Focusing strategies I mentioned earlier that the algorithm, when working, was focused on a single variable x.
However, it is rarely the case that a subtraction problem is made up of a single permission. In the general case,
one wants to subtract Q = q1 ∗ . . . ∗ qn. The specification allows for performing the smaller subtractions in any
order. The implementation, naturally, has a strategy for working this out.

The algorithm first breaks downQ into a conjunction of basic permissions, which are either anchored permis-
sions of the form x@ t, or floating permissions of the form p q⃗.

A floating permission p q⃗ can be subtracted if p is rigid. Indeed, the type-checker needs a way to identify the
desired permission; in the case where p is flexible, the algorithm refuses to explore every possible instantiation
choice, and this branch in the exploration space fails. However, if p is rigid, then the type-checker can easily look
up all applications of p in the left-hand side, and try each one in turn using FloatingApp.

An anchored permission x@ t can be subtracted as long as x is rigid. Again, if x were flexible, there would be
toomany instantiation choices to consider; the type-checker hence fails in that situation. Assuming x is rigid, the
type-checker can easily look up all permissions attached to x, and try each one in turn.

The algorithm keeps a work list of “pending” permissions q1 . . . qn, and repeatedly takes out permissions that
can be successfully subtracted. The algorithm does not backtrack when there is a choice between several suitable
permissions.

The algorithm has special cases for equations: for instance, subtracting x@ =y where both x and y are flexible
is possible, as it suffices to unify x and y. This is not complete, though, as we may want to instantiate both x and y
onto a third variable.

Backtracking points There are two main reasons for backtracking.

• Several permissions are available for a single variable. This means that when subtracting x@ t, there are
multiple choices for the permission to focus on the left-hand side. We cannot know in advance which per-
mission should be used, meaning that the algorithm needs to explore.

• Subtraction corresponds to the synchronous phase of proof search, which applies non-invertible rules.
These non-invertible rules may have an influence on the remainder of the derivation, meaning that when
faced with a choice between multiple non-invertible rules to apply, the type-checker also needs to explore.

The first case was covered above: we saw that depending on which permission one focuses on, different in-
stantiation choices would follow, hence influencing the outcome of the subtraction operation.

The second case is less obvious; let us see an example. Rules Forall-L and Exists-R are non-reversible:
these two are quantifier elimination rules. At first glance, it may seem like they can commute: both of them
introduce flexible variables which, after all, can commute in the prefix. They may, however, uncover different
types.

R(z : value).z@ ∃α, ∀β.(α, β)⊖ z@ ∃α′, ∀β′.(α′, β′)

Consider the subtraction above. Initially, renormalization occurs, which gives:

R(z : value)R(α).z@ ∀β.(α, β)− z@ ∃α′, ∀β′.(α′, β′)

Now, however, the algorithm is facedwith a choice between the two elimination rules. ApplyingForall-L yields:

R(z : value)R(α)F(β).z@ (α, β)⊖ z@ ∃α′∀β′.(α′, β′)

No renormalization happens. Next, only Exists-R can apply.

R(z : value)R(α)F(β)F(α′).z@ (α, β)⊖ z@∀β′.(α′, β′)

Renormalization gives:

R(z : value)R(α)F(β)F(α′)R(β′).z@ (α, β)⊖ z@ (α′, β′)

165

11. The subtraction operation

This is a failure, as we picking β = β′ would be ill-scoped. However, if we chose to apply Exists-R when faced
with the earlier choice, we obtain:

R(z : value)R(α)F(α′)R(β′)F(β).z@ (α, β)− z@ (α′, β′)

Which admits a trivial solution.
The type-checker has no way to guess which one of these two rules should be applied, and explores both

branches. We could probably improve this, and use a more sophisticated data structure, rather than plain old
levels. This would possibly allow us to defer the choice and explore both branches in parallel. However, this
would lead further away from a type system, probably into the domain of automated theorem proving. Out of the
several hundred test cases that make up for the Mezzo testsuite, only one of them exhibits this critical pair.

Termination issues Subtraction currently does not terminate in certain (rare) cases, due to the non-terminating
nature of normalization in the presence of recursive, one-branch data types (discussion in the proof of Lemma
9.5).

Another source of non-termination is highly-recursive, advanced programming patterns such as Landin’s knot
(Figure 4.14). This example was discussed earlier (§4.6), and I mentioned that it was hard to type-check.

1 data patched (r: value) a b =

2 Patched { contents : (x : a | consumes r @ patched r a b) -> b }

3

4 val fix [a, b] (ff : (a -> b) -> (a -> b)) : a -> b =

5 let r = newref () in

6

7 let f (x : a | consumes r @ patched r a b) : b =

8 let self = r.contents in

9 ff self x

10 in

11

12 r.contents <- f;

13 tag of r <- Patched;

14 f

Figure 11.6: Landin’s knot

The example is shown again in Figure 11.6. This code is currently accepted by the Mezzo type-checker. It is a
piece of luck, though. Consider line 9 in Figure 4.14; the type-checker needs to perform the following sequence
of operations to justify why the function call ff self is correct. I discuss some key steps of the subtraction, and I
use the internal syntax.

The algorithm first needs tomatch the pre-condition of ff: we need the argument self to have the desired type
a→ b. The substracton is thus:

r@ Patched {contents = self} ∗ self@ (a | r@ patched r a b)→ b− self@ a→ b

The left-hand side shows the relevant bits of the current permission while the righ-hand side of the subtraction
shows the desired goal. Since the goal is an arrow, substraction uses Arrow and, among other premises, com-
pares the domains contra-variantly. This leads us onto the following sub-operation, where . . . denotes the set of
duplicable permissions that remain available.

. . . ∗ a⊖ (a | r@ patched r a b)

The goal is ∀-normalized via⊖ (this is a premise of Arrow); a consequence is that the patched type is expanded
into a structural type via normalization rule (9).

. . . ∗ a− (a | r@ Patched {contents = self} ∗ self@ (a | r@ patched r a b)→ b)

166

11.4. Implementing subtraction

The type variables a subtract successfully. We are left with:

. . .− r@ Patched {contents = self} ∗ self@ (a | r@ patched r a b)→ b

The algorithm selects the permission for self as the following sub-goal:

. . .− self@ (a | r@ patched r a b)→ b

Recall that . . . represents duplicable permissions that were captured, meaning that we possess, among other
things, a permission for self in . . .:

. . . ∗ self@ (a | r@ patched r a b)→ b− self@ (a | r@ patched r a b)→ b (∗)

This is a function type, meaning that, again, the domains are compared:

. . . ∗ (a | r@ patched r a b)− (a | r@ patched r a b)

This requires, among other things, to obtain the permission for r, since it is in the goal:

. . .− r@ patched r a b

If the type-checker expands this goal and keeps going, unfortunately, it falls into an infinite loop.
Expanding the goal is absolutelymandatory: I have argued relentlessly that permissions should be normalized

in order to eagerly introduce rigid binders; this implies expanding one-branch data types in order to fetch any rigid
variables that may be hidden underneath. This step cannot be discarded, or most realistic programs would fail to
type-check.

There is hence a conflict between the rules of normalization and this particular example which somehow re-
quires these rules not to be applied. This particular example does type-check, after I took the code and, being
somewhat proficient as to the inner workings of the type-checker, fine-tuned it as follows…

The astute reader may have noticed that the name introduction construct in the definition of patched is use-
less, since x is not used anywhere. One practical advantage, however, is that the function type in the definition of
patched now becomes syntactically equal to that of f. Indeed, due to desugaring, having a name introduction con-
struct or not yields different internal types. The subtraction operation is equipped with a syntactic check: if two
types are syntactically equal, other rules are skipped and the subtraction returns immediately. In this particular
case, this means that step (∗) is an immediate success and does not recurse into the comparison of the domains,
hence avoiding an infinite loop.

Other instances of this pattern have popped up over the course of the past few years, most of the time due to
F. Pottier’s extreme Mezzo programs. Solving these cases of non-termination would probably require a complete
re-work of the type-checker routines.

Sources of incompleteness The subtraction algorithm is not complete: every flexible variable can potentially
be instantiated into ∃(α)(p : perm)(α | p): at any time, one may pack permissions into a variable. Since p can
be anything, ranging from empty to the entire set of available permissions, this means that there are just too many
cases for an algorithm to consider them all. The algorithm is hence not complete.

Even if we were to actually split every α into (α | p), doing this for every flexible variable would probably raise
termination issues.

The general feeling is thus that subtraction, because there are so many possible instantiation choices, cannot,
fundamentally, be complete. An argument in favor of this is that, having polymorphism at kind type, Mezzo em-
beds System F with subtyping, which is known to be undecidable [TU96]. Mezzo, however, does not feature the
Distrib rule; System F with subtyping remains, however, undecidable, even without this rule [Chr98].

That being said, we conjecture that subtraction is complete whenever there are no user-provided quantifiers.

Conjecture 11.5 (Completeness of subtraction). Subtraction is decidable for a fragment of Mezzo that excludes
user-provided universal quantification, i.e. that excludes the syntactic construct [a] ... and {a} ..., and that excludes
recursive, one-branch data types.

167

11. The subtraction operation

Norm
Forall-L

Arrow

Flex-Inst

Singleton
R(f, a, r)F(x = r).r@ a− r = r =

R(f, a, r)F(x = r).r@ a
R(f, a, r)F(x).r@ a− r@ =x =
R(f, a, r)F(x = r).r@ a

AppOrVar
R(f, a, r)F(x = r)R(z).r@ a ∗ z@ =x− r@ a =

R(f, a, r)F(x = r)R(z).z = x
R(f, a, r)F(x = r)R(z).r@ a ∗ z@ =x− z@ a =

R(f, a, r)F(x = r)R(z).z = x

Equation

R(f, a, r)F(x).f@ =x→ =x− f@ (=r | r@ a)→ a = R(f, a, r)F(x = r).empty

R(f, a, r).f@ ∀x.=x→ =x− f@ (=r | r@ a)→ a = R(f, a, r)F(x = r).empty

R(f).f@ ∀x.=x→ =x ⊖ f@ ∀a.a→ a = R(f, a, r).empty

Figure 11.7: A complete subtraction example (kinds omitted for readability)

Proof. (Sketch.) The only possible quantifications left are on type variables at kind value, via the translation of the
name binding construct. Moreover, these constructs are translated in away that the quantified variables are always
reachable, that is, are always connected to a root via a path that goes through structural types (tuples, constructors,
and singletons). This is the concept of unique value I mentioned earlier. Starting from the root, the algorithm will
thus always recursively perform the correct unifications thanks to the structural types.

We conjecture that eliminating “dangerous” data types allows not only normalization, but also subtraction to
terminate. 😸

11.5 A complete example

Consider the code below, where comments denote the current permission.

fun (f: [x] (=x -> =x)): [a] (a -> a) =

fun [a] (x: a): a =

(* f @ [x] (=x -> =x) * x @ a *)

f x

(* ret @ =x * x @ a *)

The code allows transforming a function of type ∀(x : value).=x → =x into a function of type ∀a.a → a. In
essence, a singleton type does not carry any useful information; it merely reveals the existence of a value, and does
not carry any ownership of the heap. Therefore, a function that takes a value and returns it, without the ability to
do anything with it, necessarily preserves its argument untouched.

Thecode aboveperformsan η-expansion,whichmanages toprove, using runtimecode, that∀(x : value).=x→
=x ≤ ∀a.a→ a. Writing code for this purpose is unnecessary: just like the permission x @ a is preserved across
the function call by the frame rule in the code, the complex Arrow rule for subtraction allows to prove the sub-
typing fact above without writing code, by carrying leftover permissions from the domains into the codomains.

Indeed, the subtraction rule for arrows feeds the remainder from the domain subtraction into the codomain
subtraction, hence performing an implicit η-expansion. Figure 11.7 contains the complete derivation for this
example.

The key steps in the derivation are highlighted in red. The first step is renormalization, which rewrites the
domain of the function in the goal. The next important step is the comparison of domains, which requires us to
pick an instantiation choice x = r. The comparison of domains produces a remainder r@ a which is then used
for comparing the codomains. Thanks to the equation z@ =x in the hypothesis, we can rewrite the goal so as to
prove the desired property.

As a side note, proving the converse subtyping relation (shown below) is trivial, as it is just a matter of instan-
tiating a with =x.

∀a.a→ a ≤ ∀(x : value).=x→ =x

168

11.6. Relating subtraction to other works

11.6 Relating subtraction to other works

Subtraction, depending on the reader’s background, may feel similar to proof search in logic, or entailment in sep-
aration logic. The present section tries to connect the procedure described in the present chapter with these two
lines of work.

Proof search in logic

Anatural candidate for connecting the type systemofMezzowith awell-defined logical system is linear logic [DCM10,
LM07]: indeed, many concepts from the literature on linear logic appear in one form or another in Mezzo.

The notion of duplicable vs. non-duplicable permission is reminiscent of the ! modality, which allows one
to freely duplicate a hypothesis via the !-contraction rule. Being duplicable, however, is not explicit, as in linear
logic, but implicitly defined by the “is duplicable” predicate. Viewing permissions as resources that, just like in
linear logic, one may or may not duplicate, remains a good way to connect the two systems.

In a subtraction problem P−Q, onemay replace the “−” symbol with “⊢”: this makes it all themore apparent
which of P and Q is the hypothesis and the goal. The way we eliminate quantifiers, either via normalization or
during subtraction corresponds to the standard introduction and elimination rules for quantifiers.

Flexible variables are a well-known implementation technique for inferring the parameters of quantifier elim-
inations; it is used in ML-style type inference too.

The type system of Mezzo does not feature all of the rules from linear logic, though. There is no such thing
as weakening a goal, for instance, via right contraction. Also, ∗ may be interpreted as either the additive or the
multiplicative conjunction, depending on the operands; there is no built-in operator, however, for disjunction.

Alternating between subtraction steps and normalization phases is, as I mentioned earlier, reminiscent of the
synchronous and asynchronous phases of linear logic. The asynchronous phase would correspond to normaliza-
tion, also called goal-reduction in proof search techniques, while subtraction would correspond to synchronous
steps, that is, the actual proof search.

Asynchronous steps have no consequence on the rest of the derivation: the may be applied in any order. In
Mezzo, this corresponds to the various normalization rules, which reduce the hypothesis into a conjunction of
atomic permissions. Asynchronous steps are applied at key points, and correspond to circled operators⊛ and⊖.
They do not introduce flexible variables, but only introduce rigid variables.

Synchronous steps have an influence on the rest of the derivation: eliminating a quantifier has consequences
on whether the derivation will succeed or not, depending on how the quantifier is eliminated. This correspond to
the subtraction rules. These rules introduce flexible variables: they need to guess the right instantiations. These
rules also backtrack, as they need to explore the search space, that is, perform the actual proof search.

When one is faced with a goal P that is made up of a conjunction P1 ∗ · · · ∗Pn, selecting Pi is akin to a focusing
step. When one performs an assert statement, this is equivalent to an explicit cut where the user provides the
intermediary result (the type-checker cannot try all possible cuts).

It should be noted that the use of flexible variables actually allows to defer the instantiation choices: whenever
introducing an existential quantifier in the goal, we don’t always have to come upwith a witness. The risk is then to
later on instantiate a flexible variable with hypotheses that did not exist back when the quantifier was introduced.
Using levels, however, guarantees that whenever settling on an instantiation choice, we pick one choice that is (in
retrospect) legal.

Mezzo, being a type system, differs significantly from the MALL fragment of linear logic. For instance, there
is no negation in Mezzo: our language of permission has no ¬P. Moreover, the subtyping relation cannot call
functions, that is, x@ t → u ∗ y@ t ̸≤ ∃(z : value) u. (We would need some sort of ghost function mechanism
for this.)

The underlying logic of Mezzo is thus intuitionistic, rather than classic: we have no way, for instance, of prov-
ing Peirce’s law ((P→ Q)→ P)→ P.

Data types encode disjunction; they are, however, tagged, meaning that the treatment of disjunctions is much
easier: the type-checker does not need to explore both branches in parallel, and can discriminate on the tag.

Perhapsmore importantly, the various, powerful subsumption rules renderMezzomore complex than a small,
self-contained logic and make it harder to reason about completeness. The decomposition of structural permis-
sions actually reveals hidden existential quantifiers, which is correctly accounted for in normalization. The same
goes for the unfolding of data types with one branch. In a sense, we know from work in proof search techniques
that these need to be performed if we want to be able to perform the proper instantiations.

169

11. The subtraction operation

We have no formal argument to offer, however, that could possibly justify why there are no other transforma-
tions that normalization has to perform, or why we haven’t forgotten an extra rule in subtraction. In other words,
a completeness result in the general case seems hard to attain. Besides, the syntactic rules for subsumption are
proved correct with regard to the semantic notion of subtyping (from [BPP14a]); we do not know, however, that
the syntactic subsumption rules are correct with regards to the semantic subtyping! We are thus left with our
experience with the implementation which has been, in general, satisfactory.

Entailment in separation logic

Subtraction, when understood in the spirit of separation logic, performs two tasks at once: frame inference and
entailment. Entailment, usuallywrittenP ⊩ Q, is a decisionprocedure for determining, whether in everymemory
configuration that satisfies P, then Q also holds.

Entailment in full separation logic is undecidable [Rey02]; in a sublanguage without quantifiers, it is, how-
ever, decidable [CYO01]. (This should not be taken as a guarantee that subtraction is undecidable in Mezzo: in
particular, the fact that our sum types are tagged makes things much easier than with built-in list segment predi-
cates, as an entailment procedure for these has to explore both cases of the anonymous sum.)

An early procedure for entailment in separation logic [BCO04] was proposed by Berdine et al. The authors
only consider a small language, equipped with equalities and disequalities, along with points-to assertions and
built-in ls (list segment) predicates. No quantifiers or user-defined predicates occur. They provide a proof system
along with a decision procedure.

This proof system was implemented in the Smallfoot tool [BCO05a]; in the worst case, the tool performs an
exponential exploration. It was not until 2011, though, that a polynomial-time algorithm was found for the same
fragment [CHO+11].

This latter piece of work uses a graph-based reasoning, and sees the problem of entailment as a restriction
of the (generally NP-complete) graph homomorphism problem. SeLoger [HIOP13] also adopts a graph-based
approach and encodes the entailment problem as a graph homomorphismproblem. The authors claim substantial
improvements compared to SLP, another tool by Rybalchenko and Pérez.

SLP [NR11] offers an algorithm for deciding entailment in separation logic. The spatial formulas in SLP rely
on the lseg (list segment) predicate. According to the authors, SLP provides a substantial gain in performance
compared to Smallfoot. However, according to Haase et al., SeLoger is also several orders of magnitude faster
than SLP.

The same authors, in a later paper, use an SMT solver to decide entailment in separation logic [PR13]. This
allows leveraging off-the-shelf tools; this also allows the logical formulas to use any theory supported by the solver.
The only spatial assertion remains the list segment.

The interaction between general-purpose, first-order SMT solvers and higher-order logics such as separation
logic is an active research area. Kassios et al. study the encoding of abstract predicates into Boogie [HLMS13]. A
subsequent paper [JKM+14] describes a specialized intermediate language better suited for these logics.

Another related issue in separation logic is determining whether an assertion is satisfiable, that is, if there ex-
ists a memory configuration where the assertion is valid. This is the satisfiability issue. Satisfiability reduces to
entailment, in that P unsatisfiable⇔ P ⊩ false (that is, P satisfiable⇔ ¬(P ⊩ false)). If an assertion corre-
sponding to a program point is not satisfiable, it means that the code is unreachable. This can have important
consequences on the remainder of the analysis. Decision procedures have been proposed; more recently, in the
general case where one may have arbitrary user-defined predicates, and not just list segments [BFGP13]. The
equivalent Mezzo concept would be an inconsistent conjunction; as I mentioned earlier, we hardly ever leverage
this information.

Being able to account for user-defined inductive predicates is an improvement over just having the built-in
list segment predicate. Nguyen et al. [NDQC07] offer a sound procedure for entailment in the presence of user-
defined inductive predicates. No completeness result is offered, but termination is guaranteed.

11.7 A glance at the implementation

Where are the algorithms?

The restrict function is implemented in typing/TypeCore.ml; it is called import_flex_instantiations_raw. In
typing/Permissions.ml, import_flex_instanciationsperformsproper renormalizationof permissions afterprop-

170

11.7. A glance at the implementation

agating instantiation choices.
The normalization procedure that is used extensively in this section is, quite unfortunately, spread out over

several modules.

• In typing/Types.ml, the expand_if_one_branch function implements normalization rule (9) (Figure 9.5).
• In typing/Types.ml, the collect function implements normalization rule (1) using a recursive traversal.
• In typing/TypeCore.ml, the modulo_flex function implementsnormalization rule (10); this functionneeds

to be called every time someone matches on a type, quite unfortunately.
• In typing/Permissions.ml, open_all_rigid_in implements normalization rules (2a), (2b), (3) or (6a),

(6b) (6c) and (7), depending on its side parameter. The function does not explicitly rewrite the type by
floating out quantifiers, but opens them directly as rigid bindings.

Addition is implemented in typing/Permissions.ml by the add_perm and add_type functions. The former
function first flattens the conjunction. Then, for each permission, it either:

• treats it immediately (equations);
• stores it in a separate list (abstract permission application);
• sends it off to add_type (anchored permission).

The add_type function uses all the functions above, then applies renormalization rules (4a), (4b) and (5) on-the-
fly.

Taking the duplicable restriction P of a permission P is implemented by the keep_only_duplicable function
in the Permissionsmodule.

The subtraction interface

The Permissions module in the type-checker implement the rules of subtraction via a set of mutually recursive
functions sub, sub_type and sub_perm.

type result = ((env * derivation), derivation) either

val sub: env -> var -> typ -> result

val sub_type: env -> typ -> typ -> result

val sub_perm: env -> typ -> result

The first function takes an environment along with a variable x and a type t, and subtracts x@ t from the
“environment”. The env type is the one I described earlier in §9.7. The second function takes two types and
performs a focused subtraction, that is, it only compares types at kind type, without the x@ . . . part. The last
function takes a permission, that is, a type at kind perm.

Results are either a success, meaning that the user gets another env, alongwith a (currently unused) successful
derivation. In the event of a failure, the user gets a failed derivation that is suitable for debugging, and for isolating
a potentially short or useful error message.

A design mistake The interface of the sub_type function is actually a design mistake: this early error makes it
impossible to type-check some valid programs.

From a high-level perspective, the problem is as follows. When focusing on a subtraction x@ t − x@ u, we
move on to a subtraction t − u where the x parameter has been dropped. This is morally equivalent to R(z :
value).z@ t − z@ u, which is a strictly stronger goal thanR(x : value).x@ t − x@ u in the case that x ∈ t or
x ∈ u. This leads to an incompleteness.

Figure11.8presents a fragmentof validMezzo that the type-checker erroneously rejects for this precise reason.
The code uses an advanced feature: the fact that one can name a branch of a data type using a name introduction
construct. The pred type is artificial; it only allows me to defeat the syntactic check I mentioned earlier andmake
sure the subtraction fails in the way I describe below.

The type-checker calls “sub env x t” (envwas described in §9.7); next, sub fetches the list of permissions for
x, select B, then calls “sub_type env B t”. As usual, the type-checker strengthens the goal, and faces (sub-goal for
pred omitted):

B− ∃(self : value) (=self | self@ B)

171

11. The subtraction operation

abstract pred (x: value): perm

data t =

| A

| (self: B | pred self)

val f (x: B | pred x): () =

assert x @ t

Figure 11.8: A valid Mezzo program that can’t be type-checked

The type-checker opens the flexible variable:

F(self : value).B− (=self | self@ B)

Lacking any other extra information, the type-checker is at a loss for picking a suitable value for self: it has lost the
information that self should instantiate onto x. The algorithm “rigidifies” self, and fails.

This source of incompleteness does not lie in the set of rules presented in this chapter; rather, it is a conse-
quence of the design I adopted in my code. A future version of the type-checker should probably remove the
t1 − t2 operation and only offer an operation for x@ t1 − x@ t2 which remembers that the left-hand side of the
anchored permission is x.

Thederivation library

Sample code Here is an extract from the Permissions module; it focuses on the subtraction of a type/mode
conjunction of the form (m X | t).

let sub_type env t1 t2 =

...

match t1, t2 with ->

...

| _, TyAnd (c, t’2) ->

try_proof env (JSubType (t1, t2)) ”And-R” begin

sub_type env t1 t’2 >>= fun env ->

sub_constraint env c >>=

qed

end

This code sample is fairly representative of the coding style that prevails in the core of the type-checker. The
code is written in a monadic style, using a library of combinators for building typing derivations. The call to
try_proof takes an environment, the judgement that we are attempting to prove, the name of the rule that we are
applying, along with the premises of the rule. It produces a result. In this case, there are two premises: one for
themode constraint, one for the type itself. We chain them using the bind (>>=)operator, and terminate the proof
by writing qed. The particular order of operations matters: the code first subtracts t1 - t’2, then checks that the
mode constraint is satisfied. ConsiderF(a).int − (a | duplicable a). We first need to make sure a is instantiated
onto int before checking that duplicable a holds. Picking the converse order of operations would lead to a failure,
as the type-checker is unable to deal with duplicable a while a is flexible.

This monadic style allows for a close correspondence between the code and the type-checking rules. While it
does not provide the same correctness guarantees as a completely certified type-checker, it nonetheless allows for
easiermanual inspection of the code. Several bugs were foundwhen switching the core of the type-checker to this
style. Also, the combinators take care of building a derivation automatically, which is then helpful for debugging.

Building derivations The interface for derivations is shown in Figure 11.7. The interface is quite brittle and
deserves further changes. In particular, there is some redundancy between the various types that deserves further

172

11.7. A glance at the implementation

1 (* Good: a snapshot of the [env] at the time the [rule] was applied to prove

2 * the [judgement]

3 * Bad: a snapshot of the [env] at the time we tried to prove the

4 * [judgement], along with all the [rule]s that failed *)

5 type derivation =

6 | Good of env * judgement * rule

7 | Bad of env * judgement * rule list

8

9 and rule =

10 rule_instance * derivation list

11

12 and rule_instance = string

13

14 and judgement =

15 | JSubType of typ * typ

16 | JSubPerm of typ

17 | ...

18

19 (* Either all [Left] (a set of successful derivations) or a single [Right]

20 * (a single bad derivation with all the failed rules). *)

21 type result = ((env * derivation, derivation) either) LazyList.t

22

23 val no_proof : env -> judgement -> result

24

25 val apply_axiom :

26 env -> judgement -> rule_instance -> env -> result

27

28 val par: env -> judgement -> rule_instance -> result list -> result

29

30 (* The [state] type: chaining the premises of a rule. *)

31 type state

32

33 val try_proof : env -> judgement -> rule_instance -> state -> result

34

35 val (>>=) : result -> (env -> state) -> state

36

37 val qed : env -> state

38

39 val fail : state

Figure 11.9: The interface of the Derivationsmodule

exploration. The general feeling is that the interface strives to express a combination of the backtracking compu-
tation monad, the failure monad, and the state monad.

The application of a typing rule is defined by the rule type (line 9), that is, a pair of the rule name (line 12)
and a list of derivations, which stand for the premises of the rule. This models either a successful rule application
(all the premises are Good derivations) or a failed rule application (the first few premises are Good, then we hit a
Bad premise).

A derivation itself is either good or bad (line 5). A good derivation captures the env where it took place and
the judgement it proves, along with the typing rule one used to prove the judgement. A bad derivation lists all the
rules that the type-checker tried, and that failed.

Since we explore the solution space, the result type is a stream, that is, a lazy list. There are two cases (which
are redundant with the definition of derivation – again, this deserves further simplifications).

173

11. The subtraction operation

i) The stream is exclusively made up of Left (env, Good _) elements. This means that at least one solution
exists to this subtraction problem. Each Left element holds the final environment env after the subtraction
took place, along with a Good derivation. The derivation may be used for debugging purposes.

ii) The stream is made up of one single Right (Bad _) element. Instead of representing failure via an empty
stream, we wish to provide the user with a meaningful error message. Building up an error messages requires
examining the derivation (not covered in this thesis) to identify possibly meaningful points of failure.

1 The module that performs subtractions (§10.9) hides the backtracking aspect and does not expose the lazy list
representation; rather, it returns a single element from the list (the “best” one in case of success, the failed one
otherwise).

Several rules may apply for proving a judgement. The judgement type (line 14) lists two representative cases:
subtracting a permission from an environment (JSubPerm) and subtracting a type from another type (JSubType).
For instance, when trying to prove P−x@ t′ (which is a JSubPerm judgement), onemay try several of the permis-
sions available for x in P, which all lead to a different rule being applied to try to prove the JSubType judgement.
In the case that all of these rules fail, we obtain a Bad derivation listing all the failed rule applications.

The libraryprovides combinators for constructing lazy lists of solutions. Thesimplest one isno_proof (line23):
it returns a result which corresponds to a judgement for which we have no rule. It is a lazy list made up of a sin-
gle Right (Bad _) element. Symmetrically, apply_axiom (line 25) builds a result for a judgement we can prove
without premises, that is, an axiom: we only need to state the name of the axiom. It is a lazy list made up of a
single Left (_, Good _) element.

More sophisticated combinators are available: par (line 28) is useful in case there are several branches to ex-
plore for proving the same judgement. The function combines the list of streams into a single lazy streamof results.
This means that if either one of the branches contains a Left (_, Good _) derivation, the resulting streamwill re-
turn Left (_, Good _) derivations. Conversely, if all the items in the streams are Right (Bad _) derivations, the
result is a single Right (Bad _) derivation that records all of the failed derivations. This is the invariant for the
result type I mentioned earlier.

These combinators allow combining results just fine; however, we only saw how to construct derivations
for axioms, that is, rules that take no premises. Building a derivation with premises is done using the state type,
which helps chaining the premises of the rule we are trying to prove.

Once the premises are properly combined, the try_proof (line 33) primitive combines the premises with a
rule so as to produce a result, which is Left (_, Good _) if all the premises are successful, or Right (Bad _) is a
premise failed.

The successful state that holds no premises is qed (line 37). As a side note, it turns out that apply_axiom env

j r sub_env really is an alias for try_proof env j r (qed sub_env). The failed state that holds no premises is
fail (line 39).

The bind operator (>>=)(line 35) allows one tomanually thread premises. It takes a premise, that is, a result,
and a function that computes the subsequent premises. If the result fails, the computation of the subsequent
premises is skipped, as the rule application is a failure anyway. If the result is successful, the subsequent premises
are computed, and the operator returns the list of all premises for the rule. When chaining premises, one must
always finish with qed or fail.

11.8 Future work

Themain concernwith the current implementation is its reliance on a set of heuristics. These heuristics have been
written with no clear intent in mind; rather, they have been fined-tuned as we came up with examples that ought
to be type-checked but failed to be accepted.

Ideas for improvements include a better representation of a subtraction operation, which I briefly mentioned
in the preceding section. Other ideas include a notion of polarity of flexible variables: typically, a variable in
positive position will want to be “as small” as possible, while a variable in negative position will want to be “as
big” as possible. We could tag flexible variables with the polarity they originated from, and make instantiation
decisions accordingly.

174

12. Themerge
operation
When type-checking examples, such as that of the map function (Figure 11.1), our match statements were in termi-
nal position, meaning that they benefited from the top-down propagation of the expected type (covered in §10.8).
Checking that the function was well-typed amounted to checking that each branch was, individually, well-typed.

Not all match statements are in tail position, though. The union-find implementation from Figure 4.3, at
line 50, uses amatch statement in themiddle of a sequence, meaning that one has to infer the post-condition (that
is, the permission) after thematch expression. Thepost-condition for thematch expressionmust be a supertype of
the two individual post-conditions from each branch: as I mentioned earlier, this is the merge problem. Naturally,
empty is a supertype of all permissions; the difficulty lies in finding a “good” (small, according to≤) permission.

The type-checking rules, such asMatch, assume we “magically” knowwhich twe should seek to obtain. The
algorithmic specification of type-checking, though, assumes a procedure for computing a disjunction of permis-
sion, written:

V0[ret] ⊢ Vl.Pl ∨ Vr.Pr = Vd.Pd

Performing this computation is the topic of the present chapter. I start off with a brief overview of the problem:
through a set of examples, I illustrate the variety of difficulties that arise when tackling this issue. Next, I formalize
the merge operation, by expressing it as a set of rewriting rules along with the application of subsumption rules.
Finally, I present an algorithmic specification and discuss implementation issues.

12.1 Illustrating themerge problem

The merge problem arises when type-checking two constructs: if-then-else and match-expressions. The two are,
in essence, the same thing, except that the former has two branches while the latter has an arbitrary number of
branches.

A series of examples

Let me offer a few examples of if-then-else expressions that produce interesting cases and highlight the main dif-
ficulties related to the merge operation. The curious reader may want to launch mezzo -html-errors -explain

html: with these special flags, the extra explain keyword instructs the type-checker to generate an HTML, click-
able explanation of these merge errors. This dissertation only reproduces the static graphs, where affine permis-
sions involved in assignment conflicts are in red.

The code samples use true as a boolean expression: naturally, in the general case, the value of the boolean
expression is not statically known.

First example Figure 12.1 presents the code snippet along with a graphical interpretation of what happens in
the then branch and the else branch. In the then branch, the components of the tuple point to the same, uniquely-

175

12. The merge operation

data mutable t = T

val z =

if explain true then begin

let x = T in

(x, x)

end else begin

(T, T)

end

Code snippet

_0 _1

T

x

Then-branch

_0 _1

T T

Else-branch

T

_0 _1

dynamic

Possible result

Figure 12.1: First merge example

data mutable t = T

val z =

let x = T in

if explain true then begin

(x, x)

end else begin

let y = T in

(y, y)

end

Code snippet

_0 _1

T

x

Then-branch

T

x

T

y

_0 _1

Else-branch

dynamic

x
_0 _1

T

Possible result

Figure 12.2: Second merge example

val z =

let y = 1 in

if explain true then

Some { contents = y }

else

None

Code snippet

int::int

y

Some contents

Then-branch

None

Else-branch

option::option int::int

Possible result

Figure 12.3: Third merge example

open list

val z =

let y = 1 in

if explain true then

Cons { head = y; tail = Nil }

else

Nil

Code snippet

Cons head tail

Nil
int::int

y

Then-branch

Nil

Else-branch

list::list int::int

Possible result

Figure 12.4: Fourth merge example

176

12.1. Illustrating the merge problem

owned T. In the else branch, the components of the tuple each point to a distinct T.
Solving this merge problem means assigning a tuple type to z. However, neither of the two descriptions sub-

sumes the other one: one cannot pick z @ (T, T) (this would be a breach of soundness should execution take the
then branch), and one cannot pick z @ (=x, =x) * x @ T (this would be a breach of soundness should execution
take the else branch).

This merge problem can be solved by picking either “z @ (T, dynamic)” or “z @ (dynamic, T)”. Lacking any
other annotation, the type-checker has no way of deciding which solution should be preferred over the other, as
they are incomparable. (If the type t were duplicable, “z @ (T, T)” would be a principal solution.)

Second example In Figure 12.2, sharing occurs, but with a different scope depending on the branch.
This time, the type-checker can pick several solutions:

• picking “{u} (x @ T * z @ (=u, =u))” preserves the permission for xwhile still retaining the fact the two
components of the tuple are pointers to the same block in the heap (u is existentially quantified);

• picking “{u} x @ dynamic * z @ (=u, =u) * u @ T” loses the permission for x in favor of a “better” one
for z;

• other, inferior solutions exist, such as “z @ (T, dynamic)” or “z @ (dynamic, T)”, which would fail to pre-
serve sharing information.

The first two solutions are incomparable, as none of them implies the other. The last two solutions, however, are
derivable from the second one. Again, if t were to be duplicable, this situation would admit a principal solution,
namely “x @ T * z @ (=u, =u) * u @ T”.

Third example Merging is even more difficult when nominal types come into play (Figure 12.3).
Let us consider the case where y refers to duplicable data, and assume for the sake of example that we have “y

@ int”. This merge problem admits a principal solution, namely “z @ option (=y) * y @ int”. One can derive
“z @ option int” using CopyDup.

In the case that y refers to non-duplicable data, e.g. if we have “y @ ref int”, then again, this problem does
not admit a principal solution, as “z @ option (=y) * y @ ref int” and “z @ option (ref int)” are not com-
parable¹.

Fourth example Lists pose similar difficulties (Figure 12.4).
Here, merging into “z @ list (=y) * y @ ...” is alright, because one can regain z @ list int using Copy-

Dup. If we had y @ ref int instead, merging into “z @ list (=y) * y @ ...” would be a terrible choice, as the
user could only append y to the list afterwards!

Three key difficulties

Computing the merge of two permissions can be divided into three sub-problems. While the actual implemen-
tation does not solve the three sub-problems in isolation, merging is better understood as the combination of the
following.

Graph traversal A permission, thanks to singleton types which encode points-to relationships, can be under-
stood as a graph. The act of merging two permissions can be understood as reconciling two heap shapes,
that is two graphs, into a common structure that subsumes the two. We do this by traversing the two graphs
in parallel and computing a mapping onto the destination graph. This is similar to shape analysis [Riv11].
This sub-problem is treated efficiently and predictably using amaximal sharing semantics by our algorithm.

Subsumption Aswe saw, reconciling aNil branch and a Cons branch requires applying subsumption rules on each
side. Folding inductive predicates is thus a key aspect of the merge problem, which is highlighted by the
third and fourth examples. What is specific toMezzo, though, is that folding a concrete type into a nominal
type requires one to infer the parameters of the type application. If the parameter is covariant, this amounts
to recursively merging the parameters; in the general case, though, we need to rely on subtraction. We saw

¹ The system would need a rule for an η-expansion of data types. While we could in theory add this, we currently have no plans to
add the feature. Besides, it would not help in the fourth example with lists.

177

12. The merge operation

in the previous chapter that inference often yields multiple solutions, and our algorithm applies heuristics.
Hence, it is not complete.

Ownership Because of mutable data, the algorithm has to decide, as in the first example, where to “assign” a
piece of mutable data. The algorithm can detect and warn the user about such cases, but picks an arbitrary
solution. The first two examples would trigger such a warning. This problem is, in practice, of surprisingly
small importance: for one thing, it rarely occurs in real-world code; besides, a natural method for detecting
and warning about these situations appears near the end of the present chapter, meaning I don’t devote any
special effort to this sub-problem. One could conceivably imaginemore general approaches based on linear
constraints, which would encode the fact that either one of two permissions is available but not both at the
same time. The need for such advanced mechanisms has not surfaced yet in our usage of Mezzo.

Why insist on solving disjunctions?

Anatural solution that comes tomind is simply to keep a symbolic disjunction and go on type-checking the rest of
the code. That is, we would add a∨ connective to the grammar of permissions, andmanipulateVl.Pl∨Vr.Pr. Any
further type-checking operationwould then be performed on each term of the disjunction, and upon reaching the
end of a function body, wewouldmerely assert that the post-condition is satisfied for each termof the disjunction.

This solution is not satisfactory for several reasons.

Combinatorial explosion If the function body that we’re type-checking contains several sequential if-then-
else expressions, then the number of terms in the disjunction grows very fast.

Control-flow sensitivy Upon reaching the end of the control flow (end of a function body), some terms of the
disjunction may satisfy the post-condition, while some others may not. Error messages would then need
to mention which branches exactly the code has to take in order to trigger the error.

Predictibility Some mistakes may only pop up very late in the type-checking process: if we were to keep dis-
junctions, then the usermay very well return an integer in one branch, and a list in another branch, without
hitting any difficulties until the very end. We want to catch these kinds of errors early.

Another mechanism we may want to leverage is a backwards analysis. One could, for instance, mark variables
which are no longer used. In the third example, if y is no longer used afterwards, it makes no sense to preserve
a permission for it. Conversely, if y is used afterwards, we may want to keep the permission for it. We have
not explored this opportunity, since the set of heuristics we currently possess has proven satisfactory. We hope
that more experiments with the language, especially with large imperative codebases, will tell whether a more
sophisticated analysis is needed or not.

A last, unsatisfactory approach would be to require program authors to annotate with post-conditions every
disjunction in the control-flow. It turns out this is already feasible. Consider the following snippet.

val z: t =

if ... then

e1

else

e2

Recall that type annotations inMezzo, as I discussed already, onlymention part of the current permission, not
the entire set of permissions that the programmer expects to possess at this program point. The example above is
type-checked as follows. The type-checker first subtracts ret@ t from each branch, obtaining two remainders. The
remainders are merged, thus giving a prefixed permission V.P. The final permission is thus V.P ∗ z@ t. Worded
differently, at least z@ t is available; if other remaining permissions can be merged, they also become available.

We could thus get rid of the merge operation entirely if we asked program authors to first, annotate every
disjunction and, second, to annotate them with the entire set of permissions that they need for the remainder of
the current function body. This is, quite obviously, unrealistic, as programmers would need to mention all the
variables that they use afterwards, all the functions from other modules that they intend to use, etc. We therefore
need to devise a way to perform this merge operation.

178

12.2. Formalizing the merge operation

12.2 Formalizing themerge operation

The merge operation computes the disjunction of several fully normalized, prefixed permissions Vi.Pi. Each Pi
is the result of type-checking the given branch using the type-checking algorithm from Chapter 10. The distin-
guished program variable ret was passed to the type-checking algorithm, meaning that the name of the return
value in each branch is ret. This distinguished variable also stands for the return value of the whole disjunction, in
Pd. The merge operation also needs to know the set of “old” variables that were in scope before the disjunction;
the operation thus needs the prefix V0 that was used before type-checking each branch. The original permission
P0 is of no particular interest.

The merge operation is hence written as follows, where ret is assumed to be rigidly bound in V0:

V0[ret] ⊢ V1.P1 ∨ . . . ∨ Vn.Pn = Vd.Pd

As mentioned earlier, the merge operation satisfies the following properties:

• Vd ≤ V0, that is, it refines the original prefix: intuitively, themerge operationmaymake some instantiation
decisions to provide better results;

• Vl ⋉ Pl ≤ Vd ⋉ Pd, that is, the destination permission is a supertype of the left permission;
• Vl ⋉ Pl ≤ Vd ⋉ Pd, that is, the destination permission also is a supertype of the right permission, that is, it

subsumes both.

An important pre-condition for the merge operation is that all variables in Vl and Vr be rigidly bound. I discuss
this restriction in §12.4 as well as how to work around it in practice.

In the rest of this chapter, I only focus on binary disjunctions. We have no special treatment for n-ary dis-
junctions, and solve the general case by recursively merging conjunctions pairwise; we have no associativity or
commutativity results for this n-ary merge operation.

Notations used in this chapter

Four permissions The permission available at the program point immediately before the disjunction is called
the original permission and is written V0.P0. The two branches in the control-flow are called the left and right
permissions, noted Vl.Pl and Vr.Pr respectively. The result of the merge operation is the destination permission
Vd.Pd.

Roots We call any variable (X : κ) ∈ V0 a root; the special ret variable that stands for the name of the match

expression is thus also a root. In other words, a root is a variable bound before the disjunction.

Local and old variables We say that any variable defined only in Vl or Vr is local. Variables defined in V0 (in-
cluding ret) are said to be old.

Correctness of merging

The correctness condition of merging is: {
Vl ⋉ Pl ≤ Vd ⋉ Pd

Vr ⋉ Pr ≤ Vd ⋉ Pd

Additionally, merging also ensures thatVd ≤ V0, that is, merging refines the original prefix. There is no particular
result we can offer that relates Vl or Vr to V0: indeed, Vl may contain extra rigid variables that were introduced in
the course of type-checking the corresponding branches.

Our specification satisfies this correctness condition; it requires us, however, to talk about existential packing
for rigid variables that only appear in Vl orVr, as well as renaming issues that allow transforming the left and right
permissions into the destination permission.

179

12. The merge operation

A formal merge example

The example below illustrates the rewriting steps and the explicit existential packings needed to show that the
operation is correct. The example only involves duplicable data and two distinct heap shapes. It is similar to the
first example in this chapter, except that it involves the duplicable type int so as to simplify the discussion.

R(ret, yl : value). ret@ (=yl, =yl) ∗ yl @ int
∨
R(ret, yr, zr : value). ret@ (=yr, =zr) ∗ yr @ int ∗ zr @ int

These two permissions describe two different heap shapes. The left one describes a pair whose two components
are the same integer, while the right one describes a pair whose two components are distinct integers. A shape
description that subsumes both is the following one:

R(ret, yd, zd : value).ret@ (=yd, =zd) ∗ yd @ int ∗ zd @ int

We do not wish, however, to introduce new rigid variables in the destination prefix; indeed, we wish to guarantee
Vd ≤ V0,R(ret : value). We therefore wish to return the following permission, where existential quantification
over local variables from Vl and Vr allows for agreement.

R(ret : value).∃(yd, zd : value) ret@ (=yd, =zd) ∗ yd @ int ∗ zd @ int

The right permission can be trivially converted into the destination permission by packing all occurrences of
yr and zr into yd and zd, respectively, and dropping the now-unused yr and zr from the prefix. We need to justify,
however, why the left prefixed permission can be transformed into the destination prefixed permission. We start
with the original permission for the left expression.

R(ret, yl : value).ret@ (=yl, =yl) ∗ yl @ int

The permission yl @ int is duplicable: we can thus create a copy of it.

. . . ≤ R(ret, yl : value).ret@ (=yl, =yl) ∗ yl @ int ∗ yl @ int

We perform two existential packings. We pack occurrences of yl that refer to the left component of the tuple as yd;
we pack occurrences of yl that refer to the right component of the tuple as zd.

. . . ≤ R(ret, yl : value).∃(yd, zd : value).ret@ (=yd, =zd) ∗ yd @ int ∗ zd @ int

Finally, we drop the unused quantifier and obtain the desired permission

. . . ≤ R(ret : value).∃(yd, zd : value).ret@ (=yd, =zd) ∗ yd @ int ∗ zd @ int

12.3 An algorithmicspecification for merging

Overview of the algorithm

The algorithm can be divided in two sub-tasks. Each sub-task is covered in a separate subsection.

Building themapping Akey issue that the example above highlights is that we need tomatch variables together.
That is, we need to compute which variable from the left “corresponds” to which variable from the right. This is
themapping problem, and corresponds to the first task for our algorithm. This is performed using a graph traversal,
which is one of the aspects of the problem I alluded to earlier (§12.1).

Taking the example above, exploring the two permission graphs from ret leads us onto a tuple type on both
sides, with matching lengths. Seeing the singleton types for the first component of the tuple, we infer yl and yr
map onto yd. Finally, examining the second component of the tuple, we conclude that yl and zr map onto zd.

The mapping is a technical tool that allows us to build the destination permission.
The mapping directly gives the list of variables that need to be existentially-quantified. For instance, in the

example above, we know from the mapping that the destination permission will be quantified using ∃(yd, zd).
The algorithm thus does not perform α-conversions: it leaves the old variables untouched, and existentially

packs local variables so as to obtain matching permissions on both sides.

180

12.3. An algorithmic specification for merging

Mapping-Anchored
(xl, xr) ∈ domain(ψ) ψ + tl ∨ tr = ψ′

ψ + xl @ tl ∨ xr @ tr = ψ′

Mapping-Tuple
ψi + tl,i ∨ tr,i = ψi+1

ψ0 + (⃗tl) ∨ (⃗tr) = ψn

Mapping-Concrete
ψi + tl,i ∨ tr,i = ψi+1

ψ0 + A {⃗f : t⃗l} ∨ A {⃗f : t⃗r} = ψn

Mapping-Singleton
ψ + xl ∨ yl = ψ′

ψ + =xl ∨ =yl = ψ′

Mapping-App
t is old ψ′ + ul,i ∨ ur,i = ψ′′

variance(t, i) = co

ψ + t u⃗l ∨ t u⃗r = ψ′′

Mapping-Var-New
(Xl,Xr) ̸∈ domain(ψ) Xd fresh
ψ + Xl ∨ Xr = ψ[(Xl,Xr) 7→ Xd]

Mapping-Var-Exists
(Xl,Xr) ∈ domain(ψ)

ψ + Xl ∨ Xr = ψ

Mapping-Star
ψ + P ∨ P′ = ψ′

ψ′ + Q ∨ Q′ = ψ′′

ψ + P ∗ Q ∨ P′∗ Q′ = ψ′′

Figure 12.5: Computing the ψ function

Building the permission Once the existential quantification is known, the last sub-task consists in comparing
permissions pairwise; pairs of permissions are rewritten using thematching; they are hence well-scoped underVd
and the existential quantifiers. Thematching gives both the packing witness (say, yl) and the name of the variable
it should pack onto (in this case, yd or zd).

Indeed, two “compatible” types are merged into a destination permission. For instance, comparing (=yl, =yl)
with (=yr, =zr), both can be rewritten using the mapping into (=yd, =zd), meaning that the two types trivially
match: this is a successful merge.

The reason why the two types above match is that we chose the prefix accordingly. After rewriting, the prefix
should give as many opportunities for merging as possible.

While the example above is relatively simple, in the general case, the rules formerging types pairwisewill need
to solve the other two sub-problems mentioned earlier, that is, the rules for merging types pairwise will need to
apply subsumption rules (the Nil vs. Cons case), and decide how to assign exclusive permissions.

Building the mapping

Building the mapping is the first sub-task; it is a prerequisite for constructing the series of existential quantifiers
and the destination permission.

Roots and paths The mapping, per the earlier example, is a set of triples (xl, xr, xd). To define what it means
for a triple to be in the mapping, I need to introduce the notion of a path.

We assume permissions to be fully normalized, meaning that there is at most one tuple or constructor type
per variable, and that tuple components and constructor fields are made up of singleton types. This also means
that type/permission conjunctions have been flattened out.

A path starts from a root (§12.2), and goes through tuple components, constructor fields and type applica-
tions, ultimately reaching a singleton type =x. We say that x is the end of the path. Formally, a path is a series of
field names, tuple indexes, and indexes for type applications.

I write x.π = y, meaning that starting from root x, following path π ends on y.

1 Because of strong updates, existing paths from the original environmentmay bemodified in each environment. The
mapping must thus be computed for all variables, not just those that are reachable from ret. Consider the snippet
below:

val _ =

let x = () in

let y = () in

let z = Ref { contents = y } in

181

12. The merge operation

if true then

z.contents := x

else

()

If only computing the mapping starting from ret, we get:

ψ =
{
(x, x, x); (y, y, y); (z, z, z); (ret, ret, ret)

}
If computing the mapping from all the roots, we get:

ψ =
{
(x, x, x); (y, y, y); (z, z, z); (ret, ret, ret); (x, y,w)

}
where w is a fresh, existentially-quantified variable.

The ψ relation We write ψ(xl, xr, xd) to mean that this triple is in the mapping. The meaning of the relation is
as follows: if ψ(xl, xr, xd), then there exists a path π and a root ρ such that in Pl (resp. Pr, Pd), Pl, ρ.π = xd.

ψ(xl, xr, xd)means that these variables are found at the end of the same path in the left, right, and destination
environment; or, that they correspond to the same symbolic heap location.

In the earlier example, a path starts from the ret root, and goes through the first component of the tuple, thus
yielding a new relation ψ(yl, yr, yd). Similarly, another path starts from the ret root, and goes through the second
component of the tuple, thus yielding ψ(yl, zr, zd).

Singleton types provide a natural naming mechanism that helps us match locations in the heap between the
left, right, and destination permissions. It is therefore crucial that one always finds singleton types in tuples and
constructors: this is the reason why we require the left and right permissions to be fully normalized.

Making the relation a function Consider the following merge.

R(ret, xl : value).ret@ (=xl, =xl)
∨
R(ret, xr : value).ret@ (=xr, =xr)

=
R(ret : value),∃(xd, yd : value).ret@ (=xd, =yd)

This solution is sub-optimal, as it loses sharing information. It is still correct, however, and relies on the following
mapping:

ψ =
{
(xl, xr, xd); (xl, xr, yd)

}
We thus need to make ψ a function, that is, make sure ψ only associates at most one value for each pair (xl, xr).
We will from there on maintain that invariant and write ψ(xl, xr) = xd to express the fact that there is only one
such xd.

This corresponds to a “maximal sharing” semantics: whenever the same variable is shared on both sides, this
will be reflected in the destination environment.

Interpreting the mapping The process of building the mapping can be understood as synthesizing a rewriting
of the variables at kind value. That is, having ψ(xl, xr, xd) can be understood as the following state of an in-progress
rewriting of the disjunction:

∃(xd : value).
(
(xl = xd ∗ . . .) ∨ (xr = xd ∗ . . .)

)
The “maximal sharing” semantics above can be understood as another rewriting; the suboptimal solution above
would correspond to the following working state:

∃(xd, yd : value).
(
(xl = xd ∗ xl = yd . . .) ∨ (xr = xd ∗ xr = yd ∗ . . .)

)
Having a maximal sharing semantics amounts to rewriting yd into xd, so as to obtain a single variable. This is
logically correct, since each branch implies xd = yd, meaning that the disjunction implies xd = yd.

If one wishes to proceed concisely, one can interpret the mapping as a rewriting guide: if ψ(xl, xr) = xd, then
one can rewrite xl (resp. xr) into xd by packing xd using xl (resp. xr) as a witness.

182

12.3. An algorithmic specification for merging

Extending themapping tootherkinds Adopting this rewriting-packing view,we aim for a unified approach and
rewrite not just variables at kind value, but also at kinds type and perm. Weno longer have an interpretation in terms
of equations, as this interpretation only makes sense as kind value; we keep, however, the rewriting interpretation
based on existential packing.

An advantage of this unified approach is that the set of rules that I’m about to introduce can treat type variables
in a uniformmanner, regardless of their kind. The rewriting becomes the identity for old, rigid variables; for local
variables, it rewrites a locally-bound type variable into one of the existentially-quantified variables.

Another advantage is that merging locally-abstract types at kind type allows for better results.

(* f @ () -> { t } t *)

if ... then

f ()

else

f ()

In the example above, we wish for the return permission to contain, among other things,R(ret : value), ∃(t :
type).ret@ (t, t). Mapping tl and tr into an existentially-quantified td yields a better result than the top type.

Computing the function The rules for computing the ψ function are presented in Figure 12.5. Recall that these
rules only compute the mapping, that is, they match heap locations, embodied as singleton types, together, so as
to compute triples of variables that correspond to the same path in the left, right, and destination environments.
In essence, this corresponds to building a set of existential quantifiers ∃(x⃗d : value), while keeping the disjunc-
tion “as is”. The next phase (“pairwise merging of types”) takes care of applying subsumption rules and moving
permissions out of the disjunction into the destination environment.

I write:
ψ + xl @ tl ∨ xr @ tr = ψ′

meaning that starting from ψ, matching tl with tr returns an extended relation ψ′. We start with the initial environ-
ment ψ0 defined as follows, where ρ⃗ are the roots, that is, the rigid variables from V0 or the distinguished variable
ret:

ψ0 =
{
(⃗ρ, ρ⃗, ρ⃗)

}
Thismeans that ψ0 also contains triples for rigid variables at kind type, since they belong toV0 aswell. For instance,
ψ0 willmost likely contain, among other things, the triple (int, int, int). This allows for a uniform treatment of rigid
variables in rule Mapping-Var-Exists, rather than adding a special-case for “old” variables.

The final ψ function is defined as:
ψ = ψ0 + Pl ∨ Pr

Thetraversal descends into conjunctions (Mapping-Star)until it findsmatching anchoredpermissions (Mapping-
Anchored). This means that the traversal starts from the initial set of roots. All structural paths are explored
(Mapping-Tuple, Mapping-Concrete, Mapping-Singleton). Whenever the traversal hits two variables,
of any kind, it either adds a new entry in the mapping (Mapping-Var-New) if this pair of variables has not been
visited already; otherwise, it does nothing (Mapping-Var-Exists). This ensures that we do indeed compute
a function. We chose to descend into type applications (Mapping-App). This creates more opportunities for
matching local program variables, or local abstract types (at kind type or perm).

These rules are non-deterministic: aswematchmore variables together viaMapping-Var-New,more oppor-
tunities for applying Mapping-Anchored pop up, meaning that the process is iterated until all possible match-
ings have been collected.

The rule Mapping-Star is also taken to operate, as usual, modulo associativity and commutativity.

An incomplete set of rules Several constructs are omitted: there is no Mapping-Function rule for instance;
quantifiers are also not covered. This means that if a local variable appears under a quantifier, no additional triple
will be added in the matching.

Deciding how far we are willing to go to match variables together is a design issue, since it only affects com-
pleteness, not soundness; we chose to remain relatively simple.

183

12. The merge operation

• Existential quantifiers are automatically unpacked due to normalization. The only way for the matching
rules to encounter an existential would be to hit an existentially-quantified parameter of a type application
that happens to mention a local variable to boot:

pred (∃(t : type) xl @ t)

This is rare enough to justify that we don’t descend into existentials while building the mapping.

• Universal quantifiers are only ever used (in practice) along with function types. The user would thus have
to write a disjunction that returns a function in both cases, with each function referring to a local variable.
Anecdotal evidence suggests this is enough of an extreme case that we can safely omit it.

Mapping is existential packing I explained informally earlier that themapping implicitly computed a rewriting
of rigid variables using existential packing. The present section explains this in greater detail.

The earlier, intuitive claim was that having ψ(xl, xr) = xd allowed one to rewrite xl (resp. xr) into xd. Let us
see why this is sound.

An important pre-condition for the merge operation (mentioned early in §12.2) is that all variables in Vl and
Vr be rigid. This means that R(X⃗l : κ⃗).Pl is equivalent to ∃(X⃗l : κ⃗).Pl. We are thus computing the following
disjunction:

(∃(X⃗l : κ⃗).Pl) ∨ (∃(X⃗r : κ⃗).Pr)

One can then further existentially-pack using the mapping. If ψ(xl, xr) = xd, then one can pack some occurrences
of xl as xd, and some occurrences of xr as xd, hence obtaining:

(∃(X⃗l : κ⃗, x⃗d : κ⃗).Pl) ∨ (∃(X⃗r : κ⃗, x⃗d : κ⃗).Pr)

This is sound, since we are always packing onto xd using a unique witness, that is, xl or xr. No two xd can be the
same, since xd is always taken to be fresh in Mapping-Var-New.

The following section is dedicated to packing and applying subsumption rules in such a way that we obtain
the following, where Xl#Pd and Xr#Pd:

(∃(X⃗l : κ⃗, x⃗d : κ⃗).Pd ∗ P′
l) ∨ (∃(X⃗r : κ⃗, x⃗d : κ⃗).Pd ∗ P′

r)

Existential quantifiers commute, meaning that we can obtain:

(∃(⃗xd : κ⃗, X⃗l : κ⃗).Pd ∗ P′
l) ∨ (∃(⃗xd : κ⃗, X⃗r : κ⃗).Pd ∗ P′

r)

Going further, we get:

(∃(⃗xd : κ⃗).Pd ∗ ∃(X⃗l : κ⃗).P′
l) ∨ (∃(⃗xd : κ⃗).Pd ∗ ∃(X⃗r : κ⃗).P′

r)

The final step consists in dropping ∃(X⃗l : κ⃗)P′
l and ∃(X⃗r : κ⃗)P′

r: the two sides of the disjunction become syntac-
tically equal, meaning the disjunction is trivially solved.

This means that we can state the following lemma:

Lemma 12.1. Rewriting rigid variables in Pl and Pr according to ψ is a correct (well-scoped) operation.

This relies on the discussion above, and in particular on the fact that there are only existential quantifiers,
meaning that they commute. Again, the assumption that no flexible variables exist inVl and Vr (that is, that there
are no universal quantifiers in-between the existentials) is restrictive, but this is discussed later on.

The final result of a merge operation is thus:

V0[ret] ⊢ Vl.Pl ∨ Vr.Pr = V0.∃(X⃗d : κ⃗).Pd

where X⃗d : κ⃗ describes all the variables in the image of ψ that are not old, andPd has been computed using ψ-based
rewritings and according to the yet-unknown procedure described in the next section.

(Again, subsequent sections discuss improvements related to flexible variable instantiations.)

184

12.3. An algorithmic specification for merging

Merge-Default
Vl#tl Vr#tr tl = tr = t

tl ∨ tr = t

Merge-Anchored
ψ(xl, xr) = xd tl ∨ tr = td

xl @ tl ∨ xr @ tr = xd @ td

Merge-Star
Pl ∨ Pr = Pd Ql ∨ Qr = Qd

Pl ∗ Ql ∨ Pr ∗ Qr = Pd ∗ Qd

Merge-Var
ψ(Xl,Xr) = Xd

Xl ∨ Xr = Xd

Merge-Tuple
t⃗l ∨ t⃗r = t⃗d

(⃗tl) ∨ (⃗tr) = (⃗td)

Merge-Constructor
t⃗l ∨ t⃗r = t⃗d

A {⃗f : t⃗l} ∨ A {⃗f : t⃗r} = A {⃗f : t⃗d}

Merge-Singleton
tl ∨ tr = td

=tl ∨ =tr = =td

Merge-App

tl ∨ tr = td

ui,l ∨ ui,r = ui,d if variance(td, i) = co

ui,l = ui,r = ui,d if Vl#ul and Vr#ur
failure otherwise
tl u⃗l ∨ tr u⃗r = td u⃗d

Merge-ConsCons
Pl ∗ xl @ A {⃗fl = y⃗l} ≤ xl @ t u⃗l
Pr ∗ xr @ B {⃗fr = y⃗r} ≤ xr @ t u⃗r

ψ(xl, xr) = xd t u⃗l ∨ t u⃗r = t u⃗d

Pl ∗ xl @ A {⃗fl = y⃗l} ∨ Pr ∗ xr @ B {⃗fr = y⃗r} = t u⃗

Merge-ConsApp-L
Pl ∗ xl @ A {⃗fl = y⃗l} ≤ xl @ t u⃗l
t u⃗l ∨ t u⃗r = t u⃗d

ψ(xl, xr) = xd

Pl ∗ xl @ A {⃗fl = y⃗l} ∨ xr @ t u⃗r = xd @ t u⃗d

Figure 12.6: The merge operation

Merging types pairwise

We now turn to the final step. We know how to match variables together; we know what the destination prefix
should be. All that is left to do is replace occurrences of variables fromVl (resp. Vr) with variables from the image
of ψ. In order to determine which replacement should be performed, we perform the exact same graph traversal
as for the mapping; we merge types pairwise, using the mapping to perform the proper rewritings.

Form of our pairwise merge judgement We write our merge rules as tl ∨ tr = td. The scope issues have been
taken care of; all we need to ensure is the following.

Lemma 12.2. If tl ∨ tr = td, then all free variables in td are either within the image of ψ, or old variables.

This guarantees that once the two local permissions Pl and Pr have been merged into Pd, we can discard Vl
and Vr and return ∃(X⃗d : κ⃗).Pd directly. The rules for merging types pairwise are presented in Figure 12.6.

Reviewing the rules Merge-Default is a fallback rule that is used whenever no other rule has been found.
It amounts to saying that that types that are syntactically equal in the original prefix V0 can be safely merged “as
is” in the resulting environment. This allows, for instance, function types to be merged, as long as their signature
does not mention local variables.

Merge-Anchored and Merge-Star implement a recursive descent on a composite permission. We recur-
sively merge anchored permissions whose left-hand sides match according to ψ. There is some non-determinism
in the way we split the permissions in two (Merge-Star); this has an incidence only in the case where there is an
conflict between who gets to own a piece of mutable data (the third sub-problemmentioned in the introduction).

The rules for the recursive descent are taken to operate, just like in the previous chapter, modulo associativity,
commutativity, and are also taken to implicitly save duplicable permissions whenever focusing on an anchored

185

12. The merge operation

x@ t. That is, merging x@ int with another type does not consume it from Pl. Merging x@ ref int does consume
it, however.

Merge-Var is key: it determines how variables that have been visited previously during the mapping phase
are translated so as to make sense under the existential quantifiers X⃗d (Lemma 12.2). There are several things to
note about this rule.

• Lacking any kind precondition, this rule applies to both variables at kind type and at kind perm: this rule
alsomerges “floating”, abstract permissions which are not anchored. This is the reasonwhy I insisted earlier
that themapping should cover variables at all kinds: we have a single rules for abstract permission variables,
type variables, program variables.

• Reviewing this rule proves our earlier claim that merging types pairwise yields a type where all variables
are either old or in X⃗d.

• The premise of this rule is always satisfied, that is, ψ(Xl,Xr) is always defined: the set of rules from Fig-
ure 12.5 and Figure 12.6 perform the exact same recursive traversal. (The implementation performs the
two in one go.)

Merge-Tuple, Merge-Constructor and Merge-Singleton are the structural rules that rely on the ψ
mapping to perform the graph transformation. The points-to relationships, embodied via singleton types in Vl,r,
are replaced with a different set of points-to relationships according to the computed mapping.

Merge-App, Merge-ConsCons, Merge-ConsApp-L (as well as the symmetrical Merge-ConsApp-R)
tackle the problem of applying subsumption rules to make permissions match (the second sub-problem men-
tioned in the introduction).

Merge-App intentionally has no kind pre-condition, so as to serve either for anchored permissions, or for
abstract, “floating” permission applications. This rule has a different behavior depending on the variance of the
i-th parameter. If the parameter is co-variant, then one can recursively merge the types: merging is a covariant
operation. If the parameter is contra-variant, one should compute the intersection of the types: the type-checker
currently has no support for this, so we merely check that the types do not mention local variables and are syn-
tactically equal. This is also the behavior for invariant parameters. For bivariant parameters, we could be smarter
and pick⊥; this has not proved useful, however. In case the parameters cannot bemerged, this is a failure and the
type applications cannot be merged.

Merge-ConsCons and Merge-ConsApp-L allow folding either both sides or just one side of the disjunc-
tion. This elides the question of finding out which type application exactly we should seek to fold onto. This
question is treated in the next section which details our implementation; in short, we use a subtraction with flex-
ible variables for the type parameters.

These two rules only mention t, not tl; we do not allow locally-defined data types. Therefore, if t appears on
both sides, it is necessarily an old variable. InMerge-ConsApp-L, the u⃗l parametersmaymention local variables.
If this happens, then Merge-App may fail to apply. Again, the subsequent section about implementation details
how we avoid this situation.

The pairwise merging rules perform the same traversal as the rules for building the mapping. This means, in
particular, that these rules do not try to merge quantified types or function types: if Merge-Default does not
apply, these types are bluntly dropped. Rules Merge-Dynamic and Merge-Unknown are omitted. The fully
normalized precondition rules out type/permission conjunctions.

Putting the pieces together

We finally have enough to describe the entire algorithm. Solving the merge problem Vl.Pl ∨ Vr.Pr can be done
by:

• defining ψ0 =
{
(⃗ρ, ρ⃗, ρ⃗)

}
for all ρ in V0

• computing ψ = ψ0 + Pl ∨ Pr

• defining X⃗d : κ⃗ = image(ψ)

• defining Pd = Pl ∨ Pr

• returning V0.∃(X⃗d : κ⃗).Pd

186

12.4. Implementation

Theorem 12.3 (Merge soundness). The result of the merge operation satisfies Pl ≤ ∃(X⃗d : κ⃗).Pd and Pr ≤ ∃(X⃗d :
κ⃗).Pd.

Proof. By Lemma 12.2, Pd is properly scoped under ∃(X⃗d : κ⃗). By Lemma 12.1, the rewritings performed by the
pairwise-merging of types are correct as well. Reviewing the rules fromFigure 12.6, we find that these correspond
to the application of subsumption rules from Figure 8.1. 😸

The complexity of the type system of Mezzo makes it difficult to state any stronger results. Experience can
offer, however, a few conjectures. The first one is related to the existence of principal solution. We know, from
the earlier examples, that having parameterized algebraic data types can yield two incomparable solutions, such
as ret@ option =y ∗ y@ ref int vs. ret@ option ref int. Similarly, we have seen that conflicts over assignment of
mutable data lead to incomparable solutions, such as ret@ (T, dynamic) vs. ret@ (dynamic,T). We can thus only
hope for a weaker result.

Definition 12.4 (Restrictedmerge problem). A restrictedmerge problem is amerge problemwhere no parameterized
data types are involved and no affine permissions are involved either.

Conjecture 12.5 (Principality). The restricted merge problem admits a principal solution.

Conjecture 12.6 (Completeness). Our algorithm can be made complete for the restricted merge problem.

Our algorithm currently does not propagate local equations to the destination environment, for complexity
reasons: wewould need to test every pair of variables, either old, or from X⃗d, to see if they became equal in both en-
vironments. (Our implementation does not support amore efficientmethod.) Should we forget the performance
concerns and implement this, we believe our algorithm to be complete for the restricted merge problem.

12.4 Implementation

Thecurrent implementation of themerge algorithm contains various tradeoffs; this section details the implemen-
tation choices that we made. The algorithm is definitely not complete; the implementation relies on subtraction,
which is not complete anyway. Moreover, non-principal situations occur, where one has to decide how to assign
an affine permission.

That being said, themerge algorithm, while complex, is one of the less contentious pieces of our type-checker.
Wehave had a surprisingly good experiencewith the current algorithm, andhardly ever needed to use explicit type
annotations. Thismay be due to our style of writing structured code with small, self-contained functions. Further
experiments with the language and, hopefully, different programming styles, will tell.

Conflicts over assignment of affine permissions

I have not discussed the third sub-problem originally mentioned in the introduction, which is that of conflicting
choices for assigning mutable data. As I mentioned earlier, a natural criterion emerges for detecting these situ-
ations. The implementation features a procedure for emitting a warning in case this situation arises, as well as a
heuristic that solves most cases, thus making sure the problem hardly ever happens in practice.

A conflict arises when:

• there is an affine permission xl @ t;
• xl appears more than once in the mapping, e.g. ψ(xl, xr) = xd and ψ(xl, yr) = zd.

This is precisely our first example from this chapter.
The root of the problem lies in Merge-Star. The rule decides how to split permissions; assuming the map-

ping above, depending on which of xl @ t ∨ xr @ t and xl @ t ∨ yr @ t is considered first, there are two possible
outcomes:

• if the former is considered first, using ψ(xl, xr) = xd, we obtain xd @ t inPd, and xl @ t and xr @ t disappear
from Pl and Pr respectively; then, we consider xl @ unknown ∨ yr @ t and are unable to merge this;

• conversely, if the latter merge is considered first, then the outcome for Pd is zd @ t.

Worded differently, the order in which we perform operations determines who “gets” the affine permission.
Lacking any backwards analysis, we have no way to know “in advance” which of the two solutions should be

selected. We thus use a combination of a heuristic and a warning.

187

12. The merge operation

A heuristic We use the following heuristic: the special return value ret is always visited first. The consequence
is that between a variable xd reachable from retd and a variable yd not reachable from retd, xd always gets the affine
permission. The rationale is that constructing a new value will most certainly consume older permissions. Other-
wise, the new value would be less useful. This allows the following example to succeed without any other annota-
tions.

(* r @ list (ref int) *)

let l =

if ... then

r

else

Nil

in

...

Without that heuristic, we would first “save” r@ list ref int, meaning that we would be unable to find a permis-
sion for l.

This is a heuristic that has served us well in practice. Along with downward type propagation of function
return types, we hardly ever annotate matches. (This could probably be further improved, for instance by visiting
roots from the most recently bound to the oldest one. We haven’t needed a more sophisticated heuristic yet.) We
still want to warn the user that we made an arbitrary decision, though.

Emitting awarning Wewant to emit a warning whenever a permission xl @ t could have served in two different
merge operations.

We mark both xl and xr whenever“xl @ tl ∨ xr @ tr” succeeds with a non-duplicable tl (and tr). Later on, if
we revisit xl (resp. xr) with a distinct yr (resp. yl), we know that the destination variable is a new one. This means
that xl @ tl (resp. xr @ tr) could have been used for another destination variable. We emit the warning.

This warning has subtle implications.

data mutable t1 = T1

data mutable t2 = T2

val z =

let x1 = T1 in

let x2 = T2 in

if true then

(x1, x1)

else

(x1, x2)

The resulting permission is z@ (T1, unknown). There is nothing we could’ve done better here, that is, this is
a principal solution, yet the type-checker emits a warning when visiting the second component of the tuple. We
strongly believe, though, that the warning is useful: the example above is definitely over-the-top, and the user
most certainly meant something else.

Treatment of equations

The entire discussion leaves equations out of the picture. In the local environments, three type of equations may
need to be merged: local-local equations, old-old equations, and local-old equations.

Local-local equations and local-old equations Local-local equations are of the form xl = yl. These equations
are handled transparently by our implementation, meaning that in the eyes of the algorithm, there is only one
name for both xl and yl.

Local-old equations are of the form xl = y0 where y0 is in V0, that is, where y0 is an old variable. Again,
this is handled transparently, as if only y0 exists. Types that mention xl are rewritten by the type-checker to only

188

12.4. Implementation

mention y0, so as to prevent any scoping issues. If y0 was an old, flexible variable, then the equation is ignored by
the type-checker since it is ill-scoped.

Old-old equations Old-old equations that were already present before the disjunction in control-flow are re-
tained and are handled transparently by the type-checker.

However, old-old equations may appear in the local permissions (either between rigid or flexible variables).
For instance, wemayhave inboth the left and right permissionsx0 = y0, wherebothx0 and y0 areold variables. We
should, in theory, merge these as well. From an implementation perspective, we do not “see” these permissions
explicitly as the variables x0 and y0 will simply be merged into the same equivalence class on both sides of the
disjunction. We can solve this by iterating over all pairs of old variables to see if they “became” equal in both sides,
and unify them in the destination environment as well. This is not implemented, as we have yet to encounter a
single case where we need this feature.

Working state of the algorithm

Therules are declarative. The implementation, however,maintains some state. Itmanipulates three sets of permis-
sions Pl, Pr and Pd in parallel; whenever a rule is successfully applied, the left and right permissions are removed
from their respective sets if they were affine, and a permission is added into Pd. Whenever a subtraction is per-
formed to infer the parameters of a type application, permissions are consumed just like in any regular subtraction.

The main loop works by iterating over the pairs of variables in ψ, at kind value. For each pair of variables
(xl, xr), and for each pair of xl @ tl and xr @ tr available, the algorithm tries to find a suitable merging rule for tl
and tr by syntactically matching on the two types.

The algorithm performs the two sub-tasks at the same time, that is, it both builds the mapping and merges
types pairwise in one go.

Inference and flexible variables

Order of variables There is a technical issue related to the order of variables. In order to justify our earlier claim
that our renaming is correct, we used the argument that existential quantifiers can freely commute, hence allowing
use to not worry about the order in which variables are introduced.

This is a tricky issue: in the case that theremay be uninstantiated flexible variables, these prevent the variables
from being reordered freely. Indeed, a careless reordering may allow for more instantiation choices for a flexible
variable, hence breaking soundness.

We assume the left and right permissions to be ∃-normalized which implies, among other things, that any
instantiated flexible variable F(X = τ : κ) has been substituted with τ everywhere it occurs and that the corre-
sponding entry has been dropped from the prefix (rule (10) of Figure 9.5).

This leaves us with the problem of uninstantiated flexible variables. To solve this, we can turn all flexible
variables into rigid ones. This is a correct operation, since it amounts to turning a ∀(X : κ) quantifier in the
hypothesis into ∃(X : κ) (and kinds are inhabited).

1 We are, in essence, failing to translate a variable that is flexible on both sides into a flexible variable in the resulting
environment. We believe this is not an excessive restriction. Anecdotal evidence suggests it hardly ever happens in
practice that the user should have flexible variables on both sides and intends on instantiating them later on in the
program; besides, the user can always annotate the disjunction with the expected type, thus choosing the proper
instantiation choice for the flexible variable.

1 Another way to deal with the flexible variable problem would be to extrude all uninstantiated flexible variables
from Vl or Vr prior to performing the merge operations. That way, we could still reorder arbitrarily the local
variables from Vl,r, while keeping flexible variables flexible. This would limit the instantiation choices and would
require changing the level of the flexible variables, which is currently unimplemented.

An oracle for making flexible variables rigid Another way to deal with flexible variables is to instantiate them
suitably. We can thus assume an oracle that tells us how to instantiate flexible variables (even local ones) prior
to the merge operation we described. After substituting them, we can proceed with the procedure we described,
which assumes no flexible variables.

189

12. The merge operation

Merge-Flexible-L
F(X : κ) ∈ Vl Vr#tr

X ∨ tr = tr

Merge-Flexible-R
F(X : κ) ∈ Vr Vl#tl

tl ∨ X = tl

Figure 12.7: Extra rules for eliminating flexible variables

The actual implementation, however, has no oracle and performs this on the fly. It works as follows: the
pairwise-merging of types is extended with the two symmetrical rules from Figure 12.7. Naturally, the prefix is
updated and threaded through the various rules to keep track of the instantiation choices that we made.

In essence, whenever we can instantiate a flexible variable with a type that contains non-local variables, we do
so, hence ensuring that the resulting type makes sense in the destination environment.

This does not cover the casewheremerging hits two local flexible variables: a correct behaviorwould be either
to fail, or to allocate a fresh flexible variable in the destination prefix, right after V0.

Inferring type application parameters The way Merge-ConsCons is written assumes we know how to fold
concrete data types into their corresponding type application. That is, the rule assumes that when faced with a
“Cons {. . .}”, we know what kind of list it is. This is actually a non-trivial problem, as we need to infer the param-
eters of the type application. Consider, for instance, a disjunction between, on the right-hand side, Pr = xr @ Nil
and, on the left-hand side:

Pl =
xl @ Cons {head = h; tail = t}

∗ t @ Nil
∗ h @ (=y, =z)
∗ y @ int
∗ z @ int

We want to infer that xl should be folded onto list (int, int). We can express this inference problem in terms of
subtraction. We want an answer to:

F(αl).(Pl − list αl)

The reason why this is a difficult problem is that there may be several solutions. Indeed, when trying to figure out
how to fold this type, any of the following solutions is acceptable:

• xl @ list ∃α.α,
• xl @ list =h,
• xl @ list (=y, =z),
• xl @ list (int, =z),
• xl @ list (=y, int),
• xl @ list (int, int).

Only the last solution is “reasonable”. Other solutions pose a problem: it is likely that the variables h, y and
z are local to the branch, meaning that there is no chance the other branch could also fold onto the same type
application.

The question of picking a “good” αl is crucial: as we saw right above, bad choices will result in a failure to
merge types (Merge-App). Our subtraction therefore implements a heuristic where we try to never instantiate a
flexible variable onto a type that contains singletons. In our example, our heuristic picks αl = (int, int). This heuristic
was mentioned earlier (§11.7).

Once this is done, we perform the same operation on the other side: we perform Nil − ∃αr.list αr, and are
left, as a result, with list αr, meaning that the variable did not have to be instantiated in order for the operation to
succeed.

We then recursively merge “list (int, int)” with “list αr”. Using Merge-Flex-R, our algorithm checks that
“(int, int)” makes sense in the destination prefix (that is, it doesn’t contain local variables), and proceeds with
instantiating “αr = (int, int)”. The result of the merge operation is thus “xd @ list (int, int)”.

190

12.5. Relation with other works

In the general case, we implement the Merge-ConsCons rule by performing a subtraction on each side, of
the form:

P− ∃(X⃗ : κ⃗).t X⃗

where t is the type the constructor belongs to, and κ⃗ are the kinds of the type parameters. We then recursively
merge the type applications using Merge-App. The same goes for Merge-ConsApp except that only one sub-
traction occurs.

Should flexible variable instantiations occur when comparing two type parameters (Merge-App), these in-
stantiation choices are propagated to the next merge operation.

1 This is similar to subtraction: we should indeed ensure that “t αl αl ∨ t int bool” fails.

Floating permissions

Permissions that are not anchored to a program variable are stored in a separate list. We take all possible combi-
nations pairwise and try to merge them, using rule Merge-App and Merge-Var.

Mode hypotheses

Mode hypotheses that may have been acquired in local environments are not merged. This situation has never
occurred in practice; we could, however, compute a join operation on the fact lattice.

12.5 Relation with other works

Compared with subtraction, the merge issue seems harder to connect with other works. The issue is briefly men-
tioned in the Vault paper [DF01] as “computing type agreement at join points”. The issue seems to be easier to
deal with in the context of Vault; from the paper, it seems like computing type agreement amounts to keeping the
intersection of the two key sets at the join point.

Most papers on separation logic focus on the entailment procedure; SeLoger [HIOP13] writes, in passing,
“these shape analysis tools mix traditional abstract interpretation techniques (e.g. custom abstract joins)”. The
lack of emphasis on this particular issue seems to imply that the problem is, somewhat, easier; understanding why
exactly is worth further investigation.

The merge procedure was remarked early on to be similar to the join operation on abstract shape domains.
This has been extensively studied byRival et al. [CR08, Riv11]; the ψ notation is inspired by these papers. Indeed,
computing a shape join amounts to folding inductive predicates and matching triples of memory locations. In
Mezzo, sums are tagged, meaning that folding inductive predicates is easier; the type parameters, though, require
inference, which makes it more difficult to handle.

While the entailment problem can be expressed in terms of graph homomorphisms [HIOP13, CHO+11],
we never needed to reason in terms of graphs for the subtraction algorithm. For the merge procedure, however,
graphs are much more prevalent: intuitively, we want to reconcile heap shapes into a common description, that
is, heap graphs. Simple examples, such as the first two I mentioned, can be understood as computing a graph
homomorphism. In the presence of parameterized algebraic data types, however, the analogy falls short: it is well-
suited to lists segments, but less so to the data types of ML (matching together two list segments corresponds to
conflating two nodes in the graph – this is the nature of a homomorphism; the corresponding graph operation for
arbitrary data types seems less simple).

12.6 A glance at the implementation

The Mergemodule in typing/Merge.ml exports just one function, which has been mentioned already (§10.9).

val merge_envs: env -> ?annot:typ -> env * var -> env * var -> env * var

The actual signature is slightly more complicated, because we return three lists of variables that were involved
in affine permission assignment conflicts (one for each of Pl, Pr and Pd). This helps the graphical error reporting
mechanisms highlight relevant portions of the permission graphs.

191

12. The merge operation

Theactual implementation has quite a bit of a history, andwould probably benefit fromamassive cleanup. The
three sub-tasks that were identified and isolated in the former section are all performed together. The algorithm
is centered around a list of pending triples to visit (a work list). It also maintains a list of known triples (the ψ
function).

let pending_jobs: (var * var * var) list ref = Lifo.create () in

...

let known_triples: (var * var * var) list ref = Lifo.create () in

Using pending_jobs, it performs a depth-first traversal of the two graphs in parallel.

let rec merge_vars

((left_env, left_var): env * var)

((right_env, right_var): env * var)

((dest_env, dest_var): env * var): env * env * env =

...

The merge_vars function takes the left and right variables, but also a pre-allocated destination variable. This is
quite different from the algorithm specification. There are two cases: either this pair of variables has been visited
already (it is in known_triples), meaning that we should just unify the pre-allocated dest_var with whatever
variable was used earlier, or this pair of variables has not been visited (it is not in known_triples), meaning that
we should just proceed with merging pair-wise.

type outcome = MergeWith of var | Proceed

let what_should_i_do

(left_env, left_var)

(right_env, right_var)

(dest_env, dest_var): outcome

=

...

Once a triple of variables has been selected, in case the variables are xl and xr at kind value, we need to take
all pairs of permissions xl @ t and xr @ t and match them pairwise. If the permissions are affine, they need to
be discarded from their respective environments. This quadratic exploration is done using the auxiliary function
merge_lists, whichmerges two lists of permissions. The merge_vars function then takes care of updating the lists
of permissions for left_var, right_var and dest_var respectively.

and merge_lists

(left_env, left_perms, processed_left_perms)

(right_env, remaining_right_perms)

?dest_var

(dest_env, dest_perms): env * (typ list) * env * (typ list) * env * (typ list) =

This function is implemented using a zipper on the left list (hence the twoparameters). Theoptional dest_var
argument is used in the presence of type annotations. The merge_lists function returns three lists along with
three environments, as the various folding steps may have consumed local permissions and added permissions in
the destination environment. The function finally calls merge_type, which performs the actual pairwise merging
of types.

and merge_type

((left_env, left_perm): env * typ)

((right_env, right_perm): env * typ)

?(dest_var: var option)

(dest_env: env): (env * env * env * typ) option

=

192

12.7. Future work

The function, naturally, returns three environments as the process may consume permissions in left_env and
right_env, and will add new permissions in dest_env.

The function may fail and return None: the Mergemodule is written in a monadic style, using the Option.bind
operator as (>>=). The merge_type function iswrittenas a series of pattern-matchingson left_perm and right_perm:
the pattern-matchings are evaluated lazily in sequence, as later matchings make assumptions that rely on ear-
lier matchings having failed. Here is a representative sample of merge_type, which implements the Merge-
Singleton rule.

| TySingleton left_t, TySingleton right_t ->

let r = merge_type (left_env, left_t) (right_env, right_t) dest_env in

r >>= fun (left_env, right_env, dest_env, dest_t) ->

Some (left_env, right_env, dest_env, TySingleton dest_t)

Finally, the main loop of the algorithm is as follows:

let state = ref (left_env, right_env, dest_env) in

while not (Lifo.empty pending_jobs) do

let left_env, right_env, dest_env = !state in

let left_var, right_var, dest_var = Lifo.pop pending_jobs in

let left_env, right_env, dest_env =

merge_vars

(left_env, left_var)

(right_env, right_var)

(dest_env, dest_var)

in

state := (left_env, right_env, dest_env);

done;

!state

We pop jobs repeatedly (this is a depth-first traversal) from the work queue; we call into the merge_var for
each triple.

12.7 Future work

The merge operation relies on the heuristics of subtraction. Currently, the subtraction has no knowledge of
whether a variable is local to a branch of the merge operation, or is an old variable. Having this information
would helpmake instantiation decisions: for instance, leftover permissions for local variables may want to be cap-
tured via flexible instantiations, when folding concrete types. (This would help with the inference difficulty for
rich booleans mentioned in §4.4).

193

Part V

Conclusion
13 Summary; perspectives

13.1 A brief history of Mezzo . 197

13.2 Looking back on the design of Mezzo . 198

13.3 Type system vs. program logic . 198

13.4 Perspectives . 199

List of Figures

Bibliography

13. Summary;
perspectives
The initial goals I outlined in the introduction (§1.4) revolved around one main axis: designing a programming
language that provides stronger guarantees.

13.1 A brief history ofMezzo

Initial goals The initial premise with Mezzo was to design a high-level language that could be used by an end-
user. A big constraint was thus to keep the complexity budget reasonably low, and tomake the language somehow
palatable. Our target audience was seasoned ML programmers; that is, users who are familiar with functional
programming, but not necessarily gurus when it comes to reasoning about ownership in their programs.

Another natural constraint was to design a language in the tradition of ML. As related work showed, there
was already a rich history of advanced type systems. These systems were, however, mostly focused around either
low-level or object-oriented languages. Applying these ideas in the context of ML thus constituted an exciting
research opportunity.

A last constraint was to design a type system, not a program logic. Several works already had explored the
“type-check first, verify later” motto. We wanted to try a fresh approach where everything would be presented as
a type system.

A first (failed) attempt We initially focused on a low-level calculus that featured primitive blocks, integer tags,
reduction inside of types, and recursive types using μ combinators. The grand idea was to later on design a surface
language that would desugar onto that core calculus.

It turned out hard to proceed this way. Lacking any vision for what the surface language should feel like,
progress on the core calculus stalled.

Things gradually became easier whenwe started thinking first about what the language should feel like; things
unfolded naturally from then on. Eventually, type-checking was performed on Simple Mezzo, which is relatively
close to the surface language, while the proof of soundness, conversely, did reason on a core calculus.

Design by example Writing examples, even though the language didn’t exist yet, turned out to be highly bene-
ficial. One may explain the design of Mezzo by looking back at the examples.

Initially, we took inspiration from static regions. Few examples could be written successfully using just static
regions, however: a big limitation indeed is that only one element may be taken out at a time. Dynamic regions
were more flexible, and seemed to be a better fit in almost all the situations. We dropped static regions from
the feature list of the language. We refined the dynamic test mechanism and came up with a sketch of the adop-
tion/abandon mechanism.

We also came up early with two variants of data types: exclusively-owned and duplicable ones. Out of habit,
we wrote both implementations and interfaces for our examples. This made us realize that we needed to reveal

197

13. Summary; perspectives

facts about data types. Amusingly, the first algorithm designed for Mezzo was thus fact inference, although it was
initially a much more ad-hoc piece of code that didn’t rely on a lattice.

Trying to write the type-checking rules led us, naturally, into keeping track of equations to handle local alias-
ing. We realized that this could be expressed using singleton types.

We picked a name for the language (“kreMLin”, along with the motto “in Soviet Russia, ML type-check you”
never took off), and I set out to implement the prototype type-checker.

13.2 Looking back on the design ofMezzo

Better understanding programs I believe the language speaks for itself: the numerous examples, libraries, pro-
gramming patterns we have seen throughout the present dissertation are evidence that one does indeed gain
greater confidence by writing their programs in Mezzo.

One way to experience this is to try writing some sample Mezzo code: this requires a brand new discipline.
The ML programmer is not accustomed to the ownership motto, and it does requires some effort to state invari-
ants via the permission mechanism. My personal experience is that it is highly beneficial: by stating clearly the
invariants one desires, the structure of the resulting program is more rigorous. The type system oftentimes makes
the programmer realize that their mental model was weak, or maybe imprecise. This is particularly true in the
case of data structures: a recent experiment with semi-persistent arrays showed that the mental model of the two
members of the lab (including the present author) was, at best, confused.

Another way to experience this is to read some Mezzo libraries. Having functions state clearly their pre- and
post-conditions is a real relief when jumping in a codebase, trying to figure out the invariants.

State change, concurrency Interestingly enough, while the state change aspect was a big initial motivation, it
turned out to be less prevalent than we thought. We do have state changes in Mezzo, and several code examples
used the feature in the present dissertation. It is not anecdotal. Nonetheless, we never really felt the need to
put state change as a first-class concept; rather, it is a consequence of our pervasive use of data types and of our
mutability discipline. It seems that state change fits naturally in the language without having to single it out as a
separate idiom.

Writing better concurrent code was also one of the initial motivations. The ownership discipline helps a lot in
that regard. While this is no silver bullet (onemay still deadlock, after all), it turns to be great that the type-checker
makes sure no two threads will compete for the same permission unless they use a lock.

A potential limitation is that racy, correct programs cannot be expressed in Mezzo. I would even go so far as
to argue that this is perhaps not the best language for that purpose.

Escape hatches It turns out we often resorted to adoption/abandon in our code; actually, as soon as one ven-
tures out of the realm of trees and singly-linked lists, it becomes pretty obvious that one should switch to dynamic
tests. This can be seen in two opposite ways. On the one hand, it may be a strength of the language that we should
have such a convenient escape hatch, hencemaking sure the programmer is never “stuck” and can always write the
programs theywish. One the other hand, not relying on adoption/abandon demands a great deal of expertise (the
work on iterators is one such example), and it may imply that we need some extra mechanisms to accommodate
for a greater variety of ownership patterns.

Nesting represents an alternative programming pattern; experience shows, however, that the programmer still
has to write a few manual checks.

The borrowing pattern has been mentioned several times over the course of this dissertation; we still don’t
have a good type-theoretic feature to easily express this usage. Should we wish to pushMezzo further andmake it
a language that actual people use, we would probably need to add more features into the type system. Fractional
permissions naturally come to mind, too. Experience from other languages seems to convey the idea that there is
no one-size-fits-all “region mechanism” that could account for the variety of patterns.

13.3 Type system vs. program logic

Throughout the whole Mezzo adventure, it seemed like there was always a tension between having a type system
and having a program logic. We did want to have just a type system, if only to explore what seemed like a less-
trodden path. The result, however, is a little bit far from the usual idea of a type system.

198

13.4. Perspectives

Having a type system has numerous advantages, which I have stressed repeatedly. It is part of the develop-
ment cycle; it builds upon a mental model that programmers (hopefully) maintain at any time when developing
their programs. It offers a unified approach instead of the combination of a type system, and a program logic.
Switching to an advanced type system is less of a conceptual gap than switching to a proof system. It allows for
more programming idioms: a proof system on top of the ML type system does not relax the restrictions of the
ML type-checking discipline.

The drawbacks that we uncovered are many, though: the type system of Mezzo loses many of the important
properties one expects, such as principality, decidability, predictability…Even grasping the base concepts of the
type system demands a high level of proficiency. The underlying theory is complex: even after some efforts, I
probably still remain the only person capable of fully deciphering an errormessage fromMezzo. Theflow-sensitive
approach to type-checking makes it all the more similar to a program logic. The fact that the type system should
apply heuristics and sometimes fail is, also, unusual.

Modern program verification tools seem to provide many of the advantages of a type system (responsiveness,
an intuitive specification language, integration with the development process) without having the constraints of
pretending to be one. Time will tell, certainly, which one of the two paths yields the greatest benefits.

13.4 Perspectives

Mezzo as a foundation for program proof An initial idea we had was to have an additional step “fill in the
blanks”: whenever the user relied on dynamic tests, an additional layer would generate proof obligations to show
that the dynamic tests were unnecessary. Piggybacking on a tool such as Why3, we envisioned a two-layered
language, where casual users would remain within the realm of type-checking, while guru users would make the
switch and also perform program verification. Such a prospect never materialized, though, and remains a good
topic for exploration. Ourmodest experiments with integer arithmetic were inconclusive; I believe, however, that
a system designed perhaps slightly differently may be able to keep the benefits of having a type system and reuse
that first coarse verification to lighten the proof obligations.

Solving via external tools The feeling that I have afterwriting all these tailored algorithms is that they feel pretty
much like a proof search mechanism in a theory. The subtraction and merging algorithms are fine-tuned for the
type system of Mezzo; a generic SMT-solver may fare worse.

A line of work that I believe is worth exploring is a system where this “program logic” aspect is recognized
and integrated from the start. Expressing all the type-checking rules as proof obligations may be a more natural
way to go rather than express everything as typing rules. A type-checker would then prove easy obligations using
specialized algorithms; an SMT-solver would take care of the rest. This requires, naturally, tremendous theoretical
and engineering effort to provide the proper feedback in a timely and user-readable manner. Probably worth
another PhD.

A research experiment The final story is that Mezzo was a research experiment; we never really had the man-
power or the will to develop it into a full-fledged programming language à laRust. Therefore, we never had much
of an experience when it comes to real-world programs. Error messages would need some work; we would need
to sort out the story for binding external libraries; we would need to add extra type-theoretic mechanisms for the
programmer’s convenience. These mechanisms would not be novel, hence not fit for publication. All of these
hypothetical, engineering-oriented items would be needed to make Mezzo a real language.

Guidelines for designing a new language As a piece of final advice, I would recommend to any fresh, enthu-
siastic PhD student trying to design a new language: first, to find a “killer application” that the language should
make possible; second, to write many examples from the start, so as to gather as much feedback as possible.

199

List of Figures

1.1 A story about a real programmer . 3
1.2 Assembly listing for the Apollo Guidance Computer – lunar landing module 3
1.3 Donald Knuth on programming languages [Knu74] . 4
1.4 Tony Hoare on programming languages [Hoa81] . 4
1.5 John Reynolds on typed vs. untyped languages [Rey85] . 5
1.6 Mezzo vs. ML: potato, potato . 8
1.7 A buggy Java program . 10

2.1 A history of linear type systems, regions and capabilities (F. Pottier) 14
2.2 Sample typing rules for linear lambda calculus . 15
2.3 The key rules of separation logic . 18
2.4 The zoology of permissions in Plural . 20

3.1 Using a write-once reference. 25
3.2 Implementation of write-once references . 26
3.3 Interface of write-once references . 28
3.4 Signature of the threadmodule . 28
3.5 Ill-typed code. 29
3.6 Fixing the racy program, using a lock . 30
3.7 Hiding internal state via a lock, generic version . 30
3.8 Definition of lists and list concatenation . 32
3.9 List concatenation in tail-recursive style . 32
3.10 A minimal implementation of stacks, with a higher-order iteration function 36
3.11 Borrowing an element from a container in direct style . 39
3.12 Alternative version of the else branch from Figure 3.11 . 41
3.13 A failed attempt to construct a cyclic graph . 42
3.14 Graphs, a cyclic graph, and depth-first search, using adoption and abandon 43

4.1 Axiomatization of nesting in Mezzo . 49
4.2 A union-find data structure implemented with nesting (interface) 51
4.3 A union-find data structure implemented with nesting . 52
4.4 Adoption/abandon as a library . 55
4.5 Affine closures as a library . 56
4.6 The type of rich booleans . 57
4.7 A program involving conjunction rejected by the type-checker . 58
4.8 Axiomatization of locks . 59
4.9 Axiomatization of conditions . 60
4.10 Specialized implementation of a channel (interface) . 60
4.11 Specialized implementation of a channel . 61
4.12 Implementation of a server using mychannel . 62

201

List of Figures

4.13 The interface of channels . 62
4.14 Landin’s knot . 63

5.1 Using the identity to encode coercions . 68
5.2 Manually applying a coercion . 71
5.3 Lifting a coercion on lists . 71
5.4 An object-oriented encoding of a counter . 73
5.5 Encoding Mitchell et al.’s movable example in Mezzo . 75

7.1 Syntax of types in Mezzo and Simple Mezzo . 88
7.2 Name collection function . 90
7.3 Types and permissions: well-kindedness (auxiliary judgement) . 90
7.4 Types and permissions: well-kindedness . 91
7.5 Types definitions: well-kindedness . 91
7.6 Expressions: well-kindedness . 91
7.7 Syntax of expressions . 94
7.8 Type-to-pattern function . 95
7.9 Types and permissions: first translation phase (auxiliary judgement) 95
7.10 Types and permissions: first translation phase . 95
7.11 Types and permissions: second translation phase (only one rule shown) 96
7.12 Expressions: translation . 97

8.1 Permission subsumption . 100
8.2 Some sample derivable subsumption rules . 101
8.3 Variance-dependent subsumption judgement . 101
8.4 Subtyping judgement . 101
8.5 Typing rules . 104
8.6 Auxiliary typing rules for pattern matching . 105
8.7 The hierarchy of modes . 108
8.8 Syntax of facts . 109
8.9 Definition of the “exclusive” judgement (some rules omitted) . 110
8.10 Definition of the “duplicable” judgement . 110
8.11 Extra typing rules for dealing with mode constraint/type conjunctions 112
8.12 Fact inference . 115
8.13 The variance lattice . 116
8.14 The variance environment and the variance predicates . 117
8.15 Alternative give and take operators . 119
8.16 The graph example, using the new formalization of adoption/abandon 120
8.17 The foreach function from CaReSL, transcribed in Mezzo [TDB13] 123

9.1 A sample permission recombination . 130
9.2 Sample excerpt from the list::length function . 131
9.3 Introducing flexible variables for polymorphic function call inference 131
9.4 Syntax of prefixes . 132
9.5 Normalization . 133
9.6 Representation of variables . 139
9.7 Environment and variable descriptors . 140

10.1 The high-level type-checking algorithm . 144

11.1 The classic map function . 155
11.2 The rules of subtraction . 159
11.3 Variance-dependent subtraction . 159
11.4 Equational rewriting in subtraction . 163
11.5 Instantiation of flexible variables (-R rules omitted) . 163
11.6 Landin’s knot . 166

202

List of Figures

11.7 A complete subtraction example (kinds omitted for readability) . 168
11.8 A valid Mezzo program that can’t be type-checked . 172
11.9 The interface of the Derivationsmodule . 173

12.1 First merge example . 176
12.2 Second merge example . 176
12.3 Third merge example . 176
12.4 Fourth merge example . 176
12.5 Computing the ψ function . 181
12.6 The merge operation . 185
12.7 Extra rules for eliminating flexible variables . 190

203

Bibliography
[AFKT03] Alex Aiken, Jeffrey S Foster, John Kodumal, and Tachio Terauchi. Checking and inferring local

non-aliasing. ACM SIGPLAN Notices, 38(5):129–140, 2003.

[AFM07] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with locations. Funda-
menta Informaticæ, 77(4):397–449, 2007.

[Ald10] Jonathan Aldrich. Resource-based programming in Plaid. Fun Ideas and Thoughts, 2010.

[BA07] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 301–320, 2007.

[Bak90] Henry G. Baker. Unify and conquer (garbage, updating, aliasing, ...) in functional languages. In
ACM Symposium on Lisp and Functional Programming (LFP), pages 218–226, 1990.

[Bat14] Batteries included. BatList, 2014.

[BBA11] KevinBierhoff,Nels E. Beckman, and JonathanAldrich. Checking concurrent typestatewith access
permissions in Plural: A retrospective. In Peri L. Tarr and Alexander L. Wolf, editors, Engineering
of Software, pages 35–48. Springer, 2011.

[BCO04] Josh Berdine, Cristiano Calcagno, and PeterW.O’Hearn. A decidable fragment of separation logic.
In Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 3328 of
Lecture Notes in Computer Science, pages 97–109. Springer, 2004.

[BCO05a] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Formal Methods for Components and Objects, volume 4111 of
Lecture Notes in Computer Science, pages 115–137. Springer, 2005.

[BCO05b] JoshBerdine, CristianoCalcagno, andPeterW.O’Hearn. Symbolic executionwith separation logic.
InAsian SymposiumonProgrammingLanguages and Systems (APLAS), volume3780ofLectureNotes
in Computer Science, pages 52–68. Springer, 2005.

[BFGP13] James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan Navarro Perez. A decision proce-
dure for satisfiability in separation logic with inductive predicates. RN, 13:15, 2013.

[BFL+11] Mike Barnett, Manuel Fähndrich, K Rustan M Leino, Peter Müller, Wolfram Schulte, and Her-
man Venter. Specification and verification: the spec# experience. Communications of the ACM,
54(6):81–91, 2011.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS),
volume 3362 of Lecture Notes in Computer Science, pages 49–69. Springer, 2004.

[Boy03] John Boyland. Checking interference with fractional permissions. In Static Analysis Symposium
(SAS), volume 2694 of Lecture Notes in Computer Science, pages 55–72. Springer, 2003.

205

http://ttic.uchicago.edu/~amal/papers/linloc-fi07.pdf
http://www.cs.cmu.edu/~aldrich/papers/pldi-fit10.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://home.pipeline.com/~hbaker1/Share-Unify.ps.gz
https://github.com/ocaml-batteries-team/batteries-included/blob/master/src/batList.ml
http://www.cs.cmu.edu/~aldrich/papers/bierhoff-plural-festschrift11.pdf
http://www.cs.cmu.edu/~aldrich/papers/bierhoff-plural-festschrift11.pdf
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/unroll_collapse.pdf
http://research.microsoft.com/~jjb/papers/smallfoot.pdf
http://research.microsoft.com/~jjb/papers/smallfoot.pdf
http://research.microsoft.com/~leino/papers/krml136.pdf
http://research.microsoft.com/~leino/papers/krml136.pdf
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf

Bibliography

[Boy10] John Tang Boyland. Semantics of fractional permissions with nesting. ACM Transactions on Pro-
gramming Languages and Systems, 32(6), 2010.

[BPP14a] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. The design and formalization of
Mezzo, a permission-based programming language. Submitted for publication, July 2014.

[BPP14b] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. Type soundness and race freedom
for Mezzo. In Proceedings of the 12th International Symposium on Functional and Logic Programming
(FLOPS 2014), volume 8475 of Lecture Notes in Computer Science, pages 253–269. Springer, 2014.

[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, andDavid N. Turner. TheML kit (version 1). Technical
Report DIKU 93/14, Department of Computer Science, University of Copenhagen, 1993.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded poly-
morphism for object-oriented programming. In Proceedings of the fourth international conference on
Functional programming languages and computer architecture, pages 273–280. ACM, 1989.

[CDOY09] Cristiano Calcagno, DinoDistefano, PeterW.O’Hearn, andHongseok Yang. Compositional shape
analysis bymeans of bi-abduction. InPrinciples of Programming Languages (POPL), pages 289–300,
2009.

[Cha10] Arthur Charguéraud. Characteristic Formulae forMechanized ProgramVerification. PhD thesis, Uni-
versité Paris 7, 2010.

[CHO+11] Byron Cook, Christoph Haase, Joël Ouaknine, Matthew Parkinson, and James Worrell. Tractable
reasoning in a fragment of separation logic. InCONCUR2011–ConcurrencyTheory, pages 235–249.
Springer, 2011.

[Chr98] Jacek Chrzaszcz. Polymorphic subtyping without distributivity. In Proceedings of the 23rd Inter-
national Symposium on Mathematical Foundations of Computer Science, pages 346–355. Springer-
Verlag, 1998.

[CMM+09] AdamChlipala, GregoryMalecha, GregMorrisett, AvrahamShinnar, andRyanWisnesky. Effective
interactive proofs for higher-order imperative programs. In International Conference on Functional
Programming (ICFP), pages 79–90, 2009.

[Coo91] WilliamRCook. Object-oriented programming versus abstract data types. InFoundations ofObject-
Oriented Languages, pages 151–178. Springer, 1991.

[CÖSW13] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership types: A survey. In
Aliasing in Object-Oriented Programming, volume 7850 of Lecture Notes in Computer Science, pages
15–58. Springer, 2013.

[CP08] Arthur Charguéraud and François Pottier. Functional translation of a calculus of capabilities. In
International Conference on Functional Programming (ICFP), pages 213–224, 2008.

[CPN98] DavidG. Clarke, JohnM. Potter, and JamesNoble. Ownership types for flexible alias protection. In
Object-Oriented Programming, Systems, Languages, andApplications (OOPSLA), pages 48–64, 1998.

[CR08] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In Principles of Pro-
gramming Languages (POPL), pages 247–260, 2008.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–522, 1985.

[CWM99] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of capa-
bilities. In Principles of Programming Languages (POPL), pages 262–275, 1999.

[CYO01] Cristiano Calcagno, Hongseok Yang, and Peter W O’hearn. Computability and complexity results
for a spatial assertion language for data structures. In FST TCS 2001: Foundations of Software Tech-
nology and Theoretical Computer Science, pages 108–119. Springer, 2001.

206

http://www.cs.uwm.edu/~boyland/papers/frac-nesting.html
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo-journal.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo-journal.pdf
http://www.it-c.dk/research/mlkit/
http://www.doc.ic.ac.uk/~ccris/ftp/popl09.pdf
http://www.doc.ic.ac.uk/~ccris/ftp/popl09.pdf
http://ynot.cs.harvard.edu/papers/icfp09.pdf
http://ynot.cs.harvard.edu/papers/icfp09.pdf
http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://doi.acm.org/10.1145/286936.286947
http://xisa.cs.colorado.edu/papers/popl08-relational.pdf
http://research.microsoft.com/Users/luca/Papers/OnUnderstanding.pdf
http://www.cs.cornell.edu/talc/papers/capabilities.pdf
http://www.cs.cornell.edu/talc/papers/capabilities.pdf

Bibliography

[DCM10] Roberto Di Cosmo and Dale Miller. Linear logic. In Edward N. Zalta, editor, The Stanford Encyclo-
pedia of Philosophy. Fall 2010 edition, 2010.

[DF01] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software. In
Programming Language Design and Implementation (PLDI), pages 59–69, 2001.

[DF04] Robert DeLine and Manuel Fähndrich. Typestates for objects. In European Conference on Object-
OrientedProgramming (ECOOP), volume3086ofLectureNotes inComputer Science, pages 465–490.
Springer, 2004.

[DP08] Dino Distefano and Matthew J. Parkinson. jStar: towards practical verification for Java. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 213–226, 2008.

[FD02] Manuel Fähndrich and Robert DeLine. Adoption and focus: practical linear types for imperative
programming. In Programming Language Design and Implementation (PLDI), pages 13–24, 2002.

[Fil03] Jean-Christophe Filliâtre. Why: a multi-language multi-prover verification tool. Research Report
1366, LRI, Université Paris Sud, 2003.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[GJLS87] David K. Gifford, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon. FX-87 reference man-
ual. Technical Report MIT/LCS/TR-407, Massachusetts Institute of Technology, 1987.

[GJSO92] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole. Report on the FX-91
programming language. Technical ReportMIT/LCS/TR-531,Massachusetts Institute of Technol-
ogy, 1992.

[GMJ+02] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in Cyclone. In Programming Language Design and Implemen-
tation (PLDI), pages 282–293, 2002.

[goo] Google C++ style guide.

[GPP+12] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. Unique-
ness and reference immutability for safe parallelism. InObject-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 21–40, 2012.

[GPP13] Armaël Guéneau, François Pottier, and Jonathan Protzenko. The ins and outs of iteration inMezzo.
HOPE 2013, July 2013.

[HIOP13] Christoph Haase, Samin Ishtiaq, Joël Ouaknine, and Matthew J Parkinson. Seloger: A tool for
graph-based reasoning in separation logic. InComputer Aided Verification, pages 790–795. Springer,
2013.

[HLMS13] Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Summers. Abstract read permis-
sions: Fractional permissions without the fractions. InVerification, Model Checking and Abstract In-
terpretation (VMCAI), volume 7737 of Lecture Notes in Computer Science, pages 315–334. Springer,
2013.

[Hoa81] Charles Antony Richard Hoare. The 1980 ACM turing award lecture. Communications, 1981.

[HP05] Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems. In
Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 8, pages
293–345. MIT Press, 2005.

[Jen13] Jonas B Jensen. Techniques for model construction in separation logic. 2013.

[JG91] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects. In Proceedings of
the 18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 303–
310. ACM, 1991.

207

http://plato.stanford.edu/archives/fall2010/entries/logic-linear/
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://research.microsoft.com/apps/pubs/default.aspx?id=67463
http://www.cl.cam.ac.uk/~mjp41/frp39distefano.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz
http://iml.univ-mrs.fr/~girard/linear.pdf
http://www.psrg.lcs.mit.edu/history/publications.html#fxps
http://www.psrg.lcs.mit.edu/history/publications.html#fxps
http://www.cs.cornell.edu/projects/cyclone/papers/cyclone-regions.pdf
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://gallium.inria.fr/~fpottier/publis/gueneau-pottier-protzenko-iteration-in-mezzo.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
http://www.itu.dk/people/jobr/research/sl-model.pdf

Bibliography

[JKM+14] Uri Juhasz, Ioannis T Kassios, Peter Müller, Milos Novacek, Malte Schwerhoff, and Alexander J
Summers. Viper: a verification infrastructure for permission-based reasoning. 2014.

[JMG+02] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and Yanling
Wang. Cyclone: A safe dialect of c. In USENIX Annual Technical Conference, General Track, pages
275–288, 2002.

[Knu74] Donald E Knuth. Structured programming with go to statements. ACM Computing Surveys
(CSUR), 6(4):261–301, 1974.

[Lar89] James Richard Larus. Restructuring Symbolic Programs for Concurrent Execution on Multiproces-
sors. PhD thesis, EECS Department, University of California, Berkeley, 1989. Technical Report
UCB/CSD-89-502.

[LDF+14] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The ocaml system release 4.02. Institut National de Recherche en Informatique et en Automatique,
2014.

[LM07] Chuck Liang andDaleMiller. Focusing and polarization in intuitionistic logic. InComputer Science
Logic, pages 451–465. Springer, 2007.

[Mat14] Niko Matsakis. PLT-redex model of rust, 2014.

[Min98] Yasuhiko Minamide. A functional representation of data structures with a hole. In Principles of
Programming Languages (POPL), pages 75–84, 1998.

[MSY11] ToshiyukiMaeda, Haruki Sato, andAkinori Yonezawa. Extended alias type system using separating
implication. In Types in Language Design and Implementation (TLDI), 2011.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly lan-
guage. ACM Transactions on Programming Languages and Systems, 21(3):528–569, 1999.

[NBAB12] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system for borrowing
permissions. In Principles of Programming Languages (POPL), pages 557–570, 2012.

[NDQC07] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated verification of
shape and size properties via separation logic. In Verification, Model Checking and Abstract Inter-
pretation (VMCAI), volume 4349 of Lecture Notes in Computer Science, pages 251–266. Springer,
2007.

[Nor09] Ulf Norell. Dependently typed programming in agda. In Advanced Functional Programming, pages
230–266. Springer, 2009.

[NR11] Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic + superposition calculus
= heap theorem prover. In Programming Language Design and Implementation (PLDI), pages 556–
566, 2011.

[opa] OPAM, the package manager for OCaml.

[Pos83] Ed Post. Real programmers don’t use pascal. Datamation, 29(7), 1983.

[Pot07] François Pottier. Wandering through linear types, capabilities and regions. 2007.

[Pot09] François Pottier. Lazy least fixed points in ML. Unpublished, December 2009.

[PR05] François Pottier andDidier Rémy. The essence ofML type inference. In BenjaminC. Pierce, editor,
AdvancedTopics in Types and Programming Languages, chapter 10, pages 389–489.MITPress, 2005.

[PR13] Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic modulo theories. In Pro-
gramming Languages and Systems, pages 90–106. Springer, 2013.

208

https://cs.sjsu.edu/~mak/CS185C/KnuthStructuredProgrammingGoTo.pdf
https://github.com/nikomatsakis/rust-redex
http://www.score.cs.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://dx.doi.org/10.1145/1929553.1929559
http://dx.doi.org/10.1145/1929553.1929559
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://www.scm.tees.ac.uk/s.qin/papers/vmcai07.pdf
http://www.scm.tees.ac.uk/s.qin/papers/vmcai07.pdf
http://www7.informatik.tu-muenchen.de/um/bibdb/navarro/pldi2011.pdf
http://www7.informatik.tu-muenchen.de/um/bibdb/navarro/pldi2011.pdf
http://opam.ocamlpro.com/
http://www.pbm.com/~lindahl/real.programmers.html
http://pauillac.inria.fr/~fpottier/slides/fpottier-2007-05-linear-bestiary.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-fix.pdf
http://gallium.inria.fr/~fpottier/publis/emlti-final.pdf

Bibliography

[Rey85] John C. Reynolds. Three approaches to type structure. In Theory and Practice of Software Develop-
ment (TAPSOFT), volume 185 of Lecture Notes in Computer Science, pages 97–138. Springer, 1985.

[Rey02] JohnC.Reynolds. Separation logic: A logic for sharedmutable data structures. InLogic inComputer
Science (LICS), pages 55–74, 2002.

[Riv11] Xavier Rival. Abstract Domains for the Static Analysis of ProgramsManipulating Complex Data Struc-
tures. Habilitation à diriger des recherches, École Normale Supérieure, 2011.

[Ré89] Didier Rémy. Type checking records and variants in a natural extension of ML. In Principles of
Programming Languages (POPL), pages 77–88, 1989.

[SCF+11] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthik Bhargavan, and Jean Yang.
Secure distributed programming with value-dependent types. In International Conference on Func-
tional Programming (ICFP), pages 266–278, 2011.

[SHM+06] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe manual mem-
ory management in Cyclone. Science of Computer Programming, 62(2):122–144, 2006.

[SNS+11] JoshuaSunshine, KarlNaden, SvenStork, JonathanAldrich, andÉricTanter. First-class state change
in plaid. In ACM SIGPLAN Notices, volume 46, pages 713–732. ACM, 2011.

[SP14a] Gabriel Scherer and Jonathan Protzenko. A toy type language: parsing and pretty-printing, 2014.

[SP14b] Gabriel Scherer and Jonathan Protzenko. A toy type language: using Fix to compute variance, 2014.

[SP14c] Gabriel Scherer and Jonathan Protzenko. A toy type language: variance 101, 2014.

[SWM00] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium on Pro-
gramming (ESOP), volume 1782 of Lecture Notes in Computer Science, pages 366–381. Springer,
2000.

[SY86] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering, 12(1):157–171, 1986.

[TDB13] AaronTuron, DerekDreyer, and Lars Birkedal. Unifying refinement andHoare-style reasoning in a
logic for higher-order concurrency. In International Conference on Functional Programming (ICFP),
pages 377–390, 2013.

[The06] The Coq development team. The Coq Proof Assistant, 2006.

[The14] The Mozilla foundation. The Rust programming language, 2014.

[TP10] Jesse A. Tov and Riccardo Pucella. Stateful contracts for affine types. In European Symposium on
Programming (ESOP), volume 6012 of Lecture Notes in Computer Science, pages 550–569. Springer,
2010.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-calculus using a
stack of regions. In Principles of Programming Languages (POPL), pages 188–201, 1994.

[TU96] J Tiuryn and P Urzyczyn. The subtyping problem for second-order types is undecidable. In Logic
in Computer Science, 1996. LICS’96. Proceedings., Eleventh Annual IEEE Symposium on, pages 74–85.
IEEE, 1996.

[Tue10] Thomas Tuerk. Local reasoning about while-loops. Unpublished, 2010.

[Wad90] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, Programming
Concepts and Methods. North Holland, 1990.

[Wik14a] Wikipedia. List of programming languages (alphabetical), 2014. [Online; accessed April, 15th
2014].

209

http://dx.doi.org/10.1007/3-540-15198-2_7
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
http://doi.acm.org/10.1145/75277.75284
http://research.microsoft.com/pubs/150012/icfp-camera-ready.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://gallium.inria.fr/blog/a-toy-type-language-1/
http://gallium.inria.fr/blog/a-toy-type-language-3/
http://gallium.inria.fr/blog/a-toy-type-language-2/
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://www.cs.cmu.edu/~aldrich/papers/classic/tse12-typestate.pdf
http://www.cs.cmu.edu/~aldrich/papers/classic/tse12-typestate.pdf
http://www.mpi-sws.org/~turon/caresl/caresl.pdf
http://www.mpi-sws.org/~turon/caresl/caresl.pdf
http://www.rust-lang.org/
http://www.eecs.harvard.edu/~tov/pubs/affine-contracts/affinecontracts10-bw.pdf
http://www.irisa.fr/prive/talpin/papers/popl94.pdf
http://www.irisa.fr/prive/talpin/papers/popl94.pdf
http://www.cl.cam.ac.uk/~tt291/talks/vstte10.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.ps
http://en.wikipedia.org/wiki/List_of_programming_languages

Bibliography

[Wik14b] Wikipedia. Singular they, 2014. [Online; accessed April, 16th 2014].

[WM00] DavidWalker andGregMorrisett. Alias types for recursive data structures. InTypes in Compilation
(TIC), volume 2071 of Lecture Notes in Computer Science, pages 177–206. Springer, 2000.

210

http://en.wikipedia.org/wiki/Singular_they
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf

	Introduction
	About type systems
	Languages and type systems
	What is the purpose of a type system?
	The purpose of building a better type system
	Mezzo: a better typed language for ML
	Playing with Mezzo
	About the proof of soundness

	A brief survey of advanced type systems
	Early, seminal works
	Close sources of inspiration
	Other related works

	A taste of Mezzo
	A Mezzo tutorial
	Three small examples
	Lists
	Breaking out: arbitrary aliasing of mutable data structures

	Bits from the standard library
	Nesting
	Adoption/abandon as a library
	One-shot functions
	Rich booleans
	Locks and conditions, POSIX-style
	Landin's knot (recursion via the mutable store)
	Other interesting bits

	Writing programs in Mezzo
	Ownership and function signatures
	Higher-order effects and crafting signatures
	Reifying coercions
	Object-oriented programming

	Mezzo, formalized
	A Mezzo reference
	Differences with the informal presentation
	Meta-variables
	Types and kinds
	Type definitions
	Modes and facts
	Programs
	Module layer

	Translating Mezzo to Simple Mezzo
	Examples
	Kind-checking
	Translation

	Type-checking Simple Mezzo
	Memory model
	Subsumption rules
	Type-checking rules
	The duplicable and exclusive modes
	Facts
	Variance
	Signature ascription
	Differences between Simple Mezzo and Core Mezzo
	Reflecting on the design of Mezzo

	Implementing Mezzo
	Normalizing permissions
	Notations
	Requirements for a good representation
	Prefixes
	Normal form for a permission
	Treatment of equations
	Data structures of the type-checker
	A glance at the implementation

	A type-checking algorithm
	Typing rules vs. algorithm
	Transformation into A-normal form
	Helper operations and notations
	Addition
	Type-checking algorithm
	About type inference
	Non-determinism in the type-checker
	Propagating the expected type
	A glance at the implementation

	The subtraction operation
	Overview of subtraction
	Subtraction examples
	The subtraction operation
	Implementing subtraction
	A complete example
	Relating subtraction to other works
	A glance at the implementation
	Future work

	The merge operation
	Illustrating the merge problem
	Formalizing the merge operation
	An algorithmic specification for merging
	Implementation
	Relation with other works
	A glance at the implementation
	Future work

	Conclusion
	Summary; perspectives
	A brief history of Mezzo
	Looking back on the design of Mezzo
	Type system vs. program logic
	Perspectives

	List of Figures
	Bibliography

