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This defense:

1 some context;

2 the design of Mezzo;

3 the implementation of Mezzo.



Some context



In fact, my main conclusion after spending ten years
of my life working on the TEX project is that software
is hard.

Don. Knuth

, author of TEX
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How can we make writing software easier?

A natural idea is to use the computer to verify the absence of
certain errors.

# let years_in_phd = 4 in
if years_in_phd = "too long" then

print_endline "oops";;

Error: The function `=' expects 2 arguments of types ['a]
and ['a], but it is given 2 arguments of types [int]
and [string].

The error is identified in advance: the compiler rejects the
program.
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Have you met… type systems?

A type system assigns types to expressions; it makes sure we
don’t mix int and string.

The point is to ensure memory safety. Indeed, well-typed
programs do not exhibit memory errors.
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Type systems are imperfect

The type system can’t check everything.

# let oc = open_out "/tmp/journal";;
# close_out oc;;
# output_string oc "Dear journal...";;
Exception: Sys_error "Bad file descriptor".

The error arises too late: the compiler has accepted the
program, yet the program executes, and runs into an error.

There is a rich design space to explore.
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It’s all about the balance!
With great power, comes great complexity.



Let’s explore the issue.



What kind of type language?

let r = ref 0
let uniq =

fun () ->
r := !r + 1;
!r

A weak type for uniq is (ML):

unit → int

A strong type for uniq is (proof):

requires: r : ref int
ensures: r : ref int ∧

old(r.contents) + 1 = r.contents ∧
ret = r.contents
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Mezzo is a language with a stronger type
system that tries to talk about ownership,
hence providing better support for modular
reasoning.



What is ownership?

A way to classify what I and others can do with
a piece of data.
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The kind of issues we want to tackle

• Will this function modify this global, shared reference?

• Can I make sure two threads don’t race for the same
memory cell?

• Is this list still usable after a function call?

• Is it safe to let the client manipulate my internal list of
items?

These questions all revolve around the concept of ownership.

Ownership is crucial, but the type system of ML does not talk
about it.
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The Mezzo style of typing

let r = ref 0
let uniq =

fun () ->
r := !r + 1;
!r

The Mezzo type system says uniq has type:

(| r@ ref int) → int

Definitely not your run-of-the-mill ML type system, but not
quite program proof either.
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The Mezzo style of typing (2)

let r = ref 0
let uniq =

fun () ->
r := !r + 1;
!r

let x₁, x₂ = uniq() || uniq()

ML says “ok”. But there’s a race condition, and Mezzo rejects
this program.

In fact, Mezzo programs are data-race free!
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The present thesis



Main contributions

• A carefully-designed language

• Novel type-theoretic mechanisms

• A matching implementation
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Let’s jump in!



Mezzo is not ML

Mezzo has permissions, of the form x@ t, separated by ∗.

In ML: Γ = x : t, y : u

In Mezzo: P = x@ t ∗ y@u

val f (x: ...): ... =
let y = ... in
...

Jonathan Protzenko — INRIA Mezzo: the defense Sept. 29th, 2014 16 / 59



Mezzo is not ML

Mezzo has permissions, of the form x@ t, separated by ∗.

In ML: Γ = x : t, y : u

In Mezzo: P = x@ t ∗ y@u

val f (x: ...): ... =
let y = ... in
...

P₁

Jonathan Protzenko — INRIA Mezzo: the defense Sept. 29th, 2014 16 / 59



Mezzo is not ML

Mezzo has permissions, of the form x@ t, separated by ∗.

In ML: Γ = x : t, y : u

In Mezzo: P = x@ t ∗ y@u

val f (x: ...): ... =
let y = ... in
...

P₂

Jonathan Protzenko — INRIA Mezzo: the defense Sept. 29th, 2014 16 / 59



Mezzo is not ML

Mezzo has permissions, of the form x@ t, separated by ∗.

In ML: Γ = x : t, y : u

In Mezzo: P = x@ t ∗ y@u

val f (x: ...): ... =
let y = ... in
...

P₃

Jonathan Protzenko — INRIA Mezzo: the defense Sept. 29th, 2014 16 / 59



Different modes for types

duplicable exclusive
I read-only read-write

others read-only —

Depends on the definition of t:

• list int is duplicable because immutable

• ref int is exclusive because mutable

This is a design choice. The user story is simple: mutable =
unique, immutable = shared.

Asserts ownership of a fraction of the heap.
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Mezzo: a language with permissions

Function may consume ownership of their arguments.

val append: [a] (
consumes xs: list a,
consumes ys: list a

) -> (zs: list a)

Let’s see explain concatenation visually.
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Cons
head
tail

Cons
head
tail

Cons
head
tail

Nil...

xs

Cons
head
tail

y₁

Cons
head
tail

y₂

Cons
head
tail

yₙ

Nil...

ys
Cons
head
tail

x₁

Cons
head
tail

x₂

Cons
head
tail

xₙ

...

zs

Concatenation may be dangerous because it creates sharing.
What about:

iter_incr xs || iter_incr zs

How can we make this safe?



Mezzo: a language with permissions

Back to the signature.

val append: [a] (
consumes xs: list a,
consumes ys: list a

) -> (zs: list a)
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Mezzo: a language with permissions

Example: list (ref int).

...
let zs = append (xs, ys) in
...
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Mezzo: a language with permissions

Example: list int.

...
let zs = append (xs, ys) in
...

After function call

xs @ list int * ys @ list int *
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Complete example: type-checking append



open list

val rec append [a] (
consumes xs: list a,
consumes ys: list a

): list a =
match xs with
| Cons { head = h; tail = t } ->

let t' = append (t, ys) in
Cons { head = h; tail = t' }

| Nil ->
ys

end

Permissions
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The base layer



Mezzo is definitely not ML

Singleton types x @ (=y): x is y
Written as: x = y

Constructor types xs @ Cons { head: t; tail: u }
(special-case: t is a singleton, we write
xs @ Cons { head = …; tail = … })

Decomposition via unfolding (named fields),
refinement (matching) and folding
(subtyping)

Several possible types x @ (int, int),
x @ ∃(y,z: value).

(=y | y @ int, =z | z @ int),
x @ ∃t.t, etc.
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A glance at the type-checking rules

General form: K,P ⊢ e : t. (K = kinding environment)

Sub
K;P2 ⊢ e : t1

P1 ≤ P2 t1 ≤ t2
K;P1 ⊢ e : t2

Frame
K;P1 ⊢ e : t

K;P1 ∗ P2 ⊢ e : (t | P2)

Read
t is duplicable

P is x@A {. . . ; f : t; . . .}
K;P ⊢ x.f : (t | P)

Tuple
K ⊢ (x1, . . . , xn) : (=x1, . . . ,=xn)

Application
K; x1 @ t2 → t1 ∗ x2 @ t2 ⊢ x1 x2 : t1
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A glance at the subsumption relation

DecomposeTuple
y@ (. . . , t, . . .)

≡ ∃(x : value) (y@ (. . . ,=x, . . .) ∗ x@ t)

EqualsForEquals
(y1 = y2) ∗ [y1/x]P ≡ (y1 = y2) ∗ [y2/x]P

EqualityReflexive
empty ≤ (x = x)

Fold
A {⃗f : t⃗} is an unfolding of X T⃗

x@A {⃗f : t⃗} ≤ x@X T⃗
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Explaining the design choices

Singleton types allow us to keep track of equalities within the
type system: unified, regular approach

Concrete types a.k.a. “constructor” types implement
refinement and state change: new patterns

Subsumption is the key ingredient that allows to use any
representation interchangeably
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The dynamic layer



An example that breaks

We need to represent a graph.

Imagine a DFS. We need to mark (mutable) nodes.

data node = mutable Node {
neighbors: list node;
seen: bool;

}

data graph = mutable Graph {
roots: list node;

}

val g: graph =
let n = Node { neighbors = nil; seen = false } in
n.neighbors <- cons (n, nil);
Graph { neighbors = cons (n, nil) }
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data node = mutable Node {
neighbors: list node;
seen: bool;

}

data graph = mutable Graph {
roots: list node;

}

val g: graph =
let n = Node { neighbors = nil; seen = false } in
let neighbors = cons (n, nil) in
n.neighbors <- neighbors;
Graph { neighbors = cons (n, nil) }

Initial permission

n @ Node { neighbors: Nil; seen: bool }



data node = mutable Node {
neighbors: list node;
seen: bool;

}

data graph = mutable Graph {
roots: list node;

}

val g: graph =
let n = Node { neighbors = nil; seen = false } in
let neighbors = cons (n, nil) in
n.neighbors <- neighbors;
Graph { neighbors = cons (n, nil) }

Fold

n @ node



data node = mutable Node {
neighbors: list node;
seen: bool;

}

data graph = mutable Graph {
roots: list node;

}

val g: graph =
let n = Node { neighbors = nil; seen = false } in
let neighbors = cons (n, nil) in
n.neighbors <- neighbors;
Graph { neighbors = cons (n, nil) }

Before Call

n @ node * nil @ list node *
cons @ (consumes (node, list node)) -> list node



data node = mutable Node {
neighbors: list node;
seen: bool;

}

data graph = mutable Graph {
roots: list node;

}

val g: graph =
let n = Node { neighbors = nil; seen = false } in
let neighbors = cons (n, nil) in
n.neighbors <- neighbors;
Graph { neighbors = cons (n, nil) }

Function Call

n @ node * nil @ list node *
cons @ (consumes (node, list node)) -> list node



data node = mutable Node {
neighbors: list node;
seen: bool;

}

data graph = mutable Graph {
roots: list node;

}

val g: graph =
let n = Node { neighbors = nil; seen = false } in
let neighbors = cons (n, nil) in
n.neighbors <- neighbors;
Graph { neighbors = cons (n, nil) }

Error

No field named
neighbors for n.
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The dynamic solution

data mutable node =
Node {

contents : int;
visited : bool;
neighbors: list dynamic;

}

data mutable graph =
Graph {

roots : list dynamic;
} adopts node
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The dynamic solution

data mutable node =
Node {

contents : int;
visited : bool;
neighbors: list dynamic;

}

data mutable graph =
Graph {

roots : list dynamic;
} adopts node

The dynamic type

List of pointers with-
out ownership
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The dynamic solution

data mutable node =
Node {

contents : int;
visited : bool;
neighbors: list dynamic;

}

data mutable graph =
Graph {

roots : list dynamic;
} adopts node

Adoption

The graph object owns
the nodes
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val g : graph =
let n = Node {

contents = 10;
visited = false;
neighbors = ();

} in
let ns =

cons [dynamic] (n, nil)
in
n.neighbors <- ns;
let g = Graph { roots = ns } in
give n to g;
g

Permissions
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A glance at the typing rules

x = adoptee, y = adopter

Give
t2 adopts t1
K; x@ t1∗ y@ t2 ⊢

give x to y : (| y@ t2)

Take
t2 adopts t1

K; x@dynamic ∗ y@ t2 ⊢
take x from y : (| x@ t1∗ y@ t2)
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Reflecting on the design of adoption/abandon

run-time check two-way
static regions ✘ ✘
nesting ✘ ✘
locks ✔ ✔

}
often used together

adoption/abandon ✔ ✔

Adoption/abandon is another essential contribution of Mezzo.
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Looking back on adoption/abandon

This mechanism bridges the static and dynamic disciplines.

It allows one to take two elements out at the same time.

It provides a built-in, efficient mechanism for fulfilling the
proof obligation x₁ != x₂ using a run-time test.
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The implementation of adoption/abandon

Each object in the heap has a hidden field.
Each adoptee maintains the address of its adopter in the
hidden field.

give x to y writes the address of y in the hidden field of x
take x from y compares the address of y with the hidden

field of x; if match, writes NULL in the hidden
field of x

Jonathan Protzenko — INRIA Mezzo: the defense Sept. 29th, 2014 39 / 59



Looking back on adoption/abandon (2)

This may seem simple; the final version is the product of many
iterations and many attempts.

One advantage: the name of the adopter serves as the name
of the conceptual region for the adoptees. (Usability!)

The proof of soundness guarantees that adoption/abandon is
safe (F. Pottier).
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Type-checking Mezzo



A glance at the subsumption relation (2)

ForallElim
∀(X : κ) P ≤ [T/X]P

CopyDup
P is duplicable

C[t] ∗ P ≤ C[(t | P)] ∗ P

HideDuplicablePrecondition
P is duplicable

(x@ (t1 | P) → t2) ∗ P ≤ x@ t1 → t2

ExistsIntro
[T/X]P ≤ ∃(X : κ) P

CoArrow
u1 ≤ t1 t2 ≤ u2

x@ t1 → t2 ≤ x@u1 → u2

Unfold
A {⃗f : t⃗} is an unfolding of X T⃗

X T⃗ has only one branch

x@X T⃗ ≤ x@A {⃗f : t⃗}
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A suitable representation of permissions

Mezzo is a powerful language: the type-checker is complex,
because of the interaction between:

• duplicable vs. non-duplicable permissions,

• equivalent permissions:
z @ (=x, =y) * x @ ref int * y @ ref int ≡
z @ (ref int, ref int),

• inference (of type application): cons [?] (x, y),
• subtyping:
[a] duplicable a => (ref a) -> a ≡
[y: value] (ref (=y)) -> (=y),

• the frame rule…
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Answer: normalization

A procedure for rewriting a permission into a normal form. In
essence:

• permissions are maximally expanded (+ one-branch,
functions),

• existential quantifiers are opened as rigid variables,

• redundant conjunctions are simplified,

• nested permissions are flattened.

Jonathan Protzenko — INRIA Mezzo: the defense Sept. 29th, 2014 43 / 59



Normalization as an asynchronous phase

Normalization rules can be applied in any order. They operate
on the current permission, that is, the hypothesis.

Normalization rules decompose non-atomic permissions into
atomic constructs. That is, they decompose positive
connectives which are left-invertible.

These are standard proof search techniques.
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Type-checking vs. logic

Mezzo remains a type system.

• far less connectives and rules

• f@ t → u ∗ x@ t ̸≤ ∃(y : value) y@u (no implicitly callable
ghost functions)

• no built-in disjunction (only tagged sums)

Mezzo’s type system feels like a limited fragment of
intuitionistic logic.
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The main type-checking algorithm

• A forward, flow-sensitive algorithm.

• Threads a normalized permission through program points.

• Relies on two algorithms: subtraction (deciding
subtyping) and merge (simplifying disjunctions)
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Subtraction: an unusual algorithm

• Subtyping needs to be decided for function calls and for
function bodies.

• Blurs the frontier between type-checking and logics.

• The subtyping algorithm has to perform inference
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More about subtraction

The operation is written P−Q = R.

V ( P − Q ) = V ′ R

Binders

Hypothesis Goal

Remainder

This means:
“with the instantiation choices from V ′, we get P ≤ Q ∗ R”.
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Subtraction example

R denotes rigidly-bound variables.

R(ℓ,h, t).
ℓ@Cons {head = h; tail = t}∗
h@ ref int ∗ t@ list (ref int)

−
ℓ@ list (ref int)

=
R(ℓ,h, t).

ℓ@Cons {head = h; tail = t}
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Backtracking

Inference uses flexible (F ) variables.

There may be several solutions:

R(x),F(α).(x@ int− x@α) =


R(x)F(α = int)

R(x)F(α = =x)

R(x)F(α = unknown)

x@ int

Not all solutions are explored: α could be (β | p).

Plus, there are other backtracking points (quantifiers).
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The prototype

Backtracking stops at the expression level: we keep one
solution when type-checking an expression.

The implementation relies on:

• efficient (good complexity) and easy-to-use (persistent)
data structures for inference with backtracking
(union-find, levels)

• fine-tuned heuristics (prioritize more likely solutions first)

Both required significant effort.
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Other type-checking difficulties

data t = mutable T

_0 _1

T

x

∨ _0 _1

T T

= ?
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The merge operation

The merge problem arises when type-checking disjunctions
(if-then-else, match).

• Combination of where to assign non-duplicable data,
subtyping, graph reconstruction.

• Does not always admit a principal solution.

• Graph-based algorithm gives good results in practice.

The merge operation is less of a problem than inference
difficulties.
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Looking back on Mezzo



What we’ve learned

• Ownership as an atomic, fundamental concept.

• Power of a unified approach.

• Importance of the surface language.

• Key ingredient: the adoption/abandon approach.

• Role of examples.
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Going further

• Restrict the expressivity of the system (results/usability).

• Re-use the “pluggable” approach idea (static or dynamic).

• Extra mechanisms for common programming patterns.

• Make the system gradual for better interoperability and
conversion.

• Mezzo as an extension of ML (refinement types?)
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Mezzo
the language of the future

The end.



Online demo!

http://gallium.inria.fr/~protzenk/mezzo-web/
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Detecting race-conditions

Buggy code:

val r = newref 0
val print_uniq (| r @ ref int): () =

r := !r + 1;
print !r

val _ =
thread::spawn print_uniq;
thread::spawn print_uniq;

Result:
Here's a tentatively short, potentially misleading error message.
File "/tmp/test.mz", line 7, characters 16-26:

thread::spawn print_uniq;
^^^^^^^^^^

Could not obtain the following permission:
r @ ref::ref int::int
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Detecting race-conditions (2)

Fixed code:
val r = newref 0
val l: lock::lock (r @ ref int) = lock::new ()
val print_uniq (): () =

lock::acquire l;
r := !r + 1;
print !r;
lock::release l

val _ =
thread::spawn print_uniq;
thread::spawn print_uniq;
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DFS (in surface syntax)

(* Assumes all the nodes in the graph are set to [false]. *)
val traverse (g: graph): () =
let rec visit (n: dynamic | g @ graph): () =

take n from g;
if n.seen then
(* The node has been visited already *)
give n to g

else begin
(* The node has not been visited yet. *)
let neighbors = n.neighbors in
(* Mark it as visited. *)
n.seen <- true;
(* We keep a copy of [children] (list dynamic is duplicable). *)
give n to g;
(* Recursively visit the children. *)
list::iter (neighbors, visit)

end
in
(* Visit each of the roots. *)
iter (g.roots, visit)
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Tail-recursive concatenation

data mutable xlist a =
| XNil
| XCons { head: a; tail: () }

alias xcons a =
XCons { head: a; tail: () }

val rec appendAux [a] (consumes (dst: xcons a, xs: list a, ys: list a))
: (| dst @ list a)
=
match xs with
| Cons ->

let dst' = XCons { head = xs.head; tail = () } in
freeze (dst, dst');
appendAux (dst', xs.tail, ys)

| Nil ->
freeze (dst, ys)

end
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Tail-recursive concatenation (2)

val append [a] (consumes (xs: list a, ys: list a)) : list a =
match xs with
| Cons ->

let dst = XCons { head = xs.head; tail = () } in
appendAux (dst, xs.tail, ys);
dst

| Nil ->
ys

end
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