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Mezzo is a functional programming language with ef-
fects, in the tradition of ML. Mezzo aims to provide a
successor to OCaml with a finer control of aliasing and
effects. We offer stronger static guarantees on the mu-
table store: the language can express non-aliasing and
separation properties. This fine-grained control of own-
ership and effects allows Mezzo to type-check programs
previously deemed unsafe by the OCaml type-checker.

Idioms such as delayed initialization or strong (type-
changing) updates are possible: Mezzo understands the
in-place swap function, which swaps the two components
of a pair. Similarly, a tail-recursive, destination-passing
style version of map can be type-checked.

Mezzo is a language for users: our system tracks effects
more accurately than global effect systems, but we use
dynamic checks (section 3.1) to keep the system simple.
This introduction is hardly self-contained, and the curious
reader may wish to refer to [1] for a full introduction to
the language.

1 Permissions
The key concept in Mezzo is the notion of permission. Per-
missions describe how objects are laid out in memory: they
describe the shape of the heap. Permissions also enable
programmers to control the ownership of objects, which
turns out to be paramount in a concurrent setting.

A permission is written x @ t, meaning “x may be
viewed with type t”. A permission grants access to an
object: x @ ref int asserts that “we” have the right to
access x, and that it is a valid integer reference to boot.
Permissions have no existence at runtime.

A permission may also assert what “others” (other
threads, other parts of the program) are allowed to do,
depending on the mode of the permission. Duplicable per-
missions describe read-only blocks in the heap; such per-
missions can be freely copied and passed to others – effec-
tively sharing access to the block. Exclusive permissions
describe read-write blocks in the heap; they cannot be
copied, that is, the block has a unique owner.

duplicable exclusive
we read-only read-write

others read-only —

Figure 1: Access control

At any point in the program, a set (conjunction) of per-
missions is available; the set may include several permis-
sions that refer to the same object.

1.1 Permission conjunction
The conjunction of two permissions p and q is written
p*q. Our conjunction extends the separating conjunction
of separation logic:

• on exclusive portions of the heap, * behaves as the
usual separating statement: x @ t * x' @ t' asserts
that x and x' cannot point to the same memory loca-
tion – this is a must-not-alias constraint;

• on non-exclusive portions of the heap, the various per-
missions just need to be consistent with each other:
x @ int * x @ int is such a consistent conjunction.

1.2 Manipulating permissions
Here is a datatype definition for duplicable pairs:

data pair a b = Pair { left: a; right: b }

let x = Pair {left = 7; right = 3} creates such a pair,
yielding a new duplicable permission x @ pair int int.
Mezzo automatically unfolds this permission and intro-
duces fresh names for the components, thus yielding the
following conjunction:

x @ Pair { left: =l; right: =r } *
l @ int * r @ int

The left field of x has the singleton type =l: this means
x.left and l refer to the same object – this is a must-alias
constraint. From now on, we will omit the colon and write
Pair { left = l; right = r }.

Should the programmer write let y = x.left, a new
permission will be added, namely y @ =l, which we write
y = l. Thus, a conjunction of permissions can include a
set of equations.

1.3 Example: swapping a pair in place
Objects of type pair are duplicable, hence immutable.
Uniquely-owned, mutable pairs are defined as follows:

exclusive data xpair a b =
XPair { left: a; right: b }

The code from figure 2 demonstrates how to swap the two
components of such a pair (comments indicate the set of
available permissions after the line has been executed).

Notice the change in the permission of x between lines 2
and 3: it accounts for the new aliasing relationship, since
the left field now points to r instead of l. Line 4 works
in a similar fashion.

If we wish, we can trade the final conjunction for a
weaker, more concise permission, namely x @ xpair b a.
This code snippet changes the type of x: we call this a
strong update. We’ll see in the following section how to
turn this code snippet into a function.



1 let x = XPair {left = …; right = …} in (* x @ XPair {left = l; right = r} * l @ a * r @ b *)
2 let t = x.left in (* x @ XPair {left = l; right = r} * l @ a * r @ b * t = l *)
3 x.left <- x.right; (* x @ XPair {left = r; right = r} * l @ a * r @ b * t = l *)
4 x.right <- t (* x @ XPair {left = r; right = t} * l @ a * r @ b * t = l *)

Figure 2: A fragment of code that performs a swap

2 Effects in function types
2.1 Some base types
Tuple types are written (t1, ..., tn). If z is the tuple ex-
pression (x, y), then we have z @ (=x, =y). Furthermore,
if x @ t * y @ u is also available, then we can recombine
these three permissions to obtain z @ (t, u).

Package types allow one to bundle permissions along
with a type: we write (t|p) to store permission p along
with a value of type t. The left-hand-side exists at run-
time; the right-hand side does not.

2.2 Some accurate function types
Let us now consider the simple case of swap1, a function
that takes a pair and returns a new pair with its compo-
nents swapped. The function does not perform an in-place
update: it returns a fresh pair.

val swap1: pair a b -> pair b a
let swap1 (Pair { left = l; right = r}) =

Pair { right = l; left = r }

Functions must be annotated with their signature in
Mezzo. This signature may read like ML, but it conveys re-
quirements about the permissions consumed and returned
by the function. This naïve version of the swap function
fails to type-check; let us now see why.

In order to call swap1 x, the permission x @ pair a b
must be available to the caller, to be consumed by swap1.
Moreover, we understand this permission to be returned
to the caller. Therefore, swap1 x will return to the caller
both the original permission on x and a new value with
type pair b a.

However, after calling swap1, the components of the pair
will be pointed to by both the old pair and the fresh one.
Therefore, for the body of swap1 to type-check, its signa-
ture must demand that a and b be duplicable types.

val swap: duplicable (a, b) =>
pair a b -> pair b a

The body of the function will now type-check. Interest-
ingly enough, the following signature is also valid:

val swap2: (consumes x: pair a b) -> pair b a

Here, the argument x is consumed by the function; that
is, the permission referring to it is not returned to the
caller. This type is more general: we leave it up to the
caller to (implicitly) save a copy of the permission on x, by
duplicating the permission before calling swap2, if possible.

Finally, if we want to write an in-place version of swap
that operates on exclusive pairs, we need to express the
fact that the function modifies the type of its argument.

val xswap: (consumes x: xpair a b)
-> ( | x @ xpair b a)

Here, xswap operates in place; therefore, it returns a tuple
with no value components, i.e. the unit type. The permis-
sion on the argument is not returned; instead, a different
permission for x is returned to the caller, reflecting the
fact that the type of x has now changed.

3 Beyond simple permissions
3.1 An adoption mechanism for sharing
Basic permissions only allow for ownership trees; for muta-
ble data structures with sharing, Mezzo uses a mechanism
called adoption. It allows one to alias mutable objects, but
uses runtime checks to ensure only one person at a time
may “view” the mutable object. These dynamic checks
may fail: we believe this is the price to pay to keep the
system reasonably simple and expressive.

3.2 Concurrency
Permissions embody access control: only one thread at a
time may own an exclusive permission, i.e. access a muta-
ble location in the heap. Moreover, the adoption feature is
thread-safe: several threads may try to acquire an object
through the abandon operation, but runtime-checks make
sure only one thread obtains an exclusive permission in
the end. Finally, we provide a library for locks, exposed
as duplicable objects that protect a permission. Therefore,
programs written in Mezzo are data-race free.

The interaction of Mezzo and concurrency is still being
worked on; we do not have sophisticated mechanisms such
as fractional permissions yet, but this is an area of the
design of Mezzo that is likely to evolve.

4 The current status of Mezzo
We are presently working on a prototype type-checker; the
prototype can already type-check simple programs. Chal-
lenges include providing useful error messages, and elabo-
rating heuristics for expressions with no principal type. In
parallel, we are working on a formal proof of correctness
for Mezzo, using the Coq proof assistant. We proved sub-
ject reduction for a core subset of Mezzo; we are looking
forward to extend this proof to the whole language.
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