
Programming with permissions: the Mezzo language
Jonathan Protzenko

Inria
jonathan.protzenko@ens-lyon.org

François Pottier
Inria

francois.pottier@inria.fr

Mezzo is a functional programming language with ef-
fects, in the tradition of ML. Mezzo aims to provide a
successor to OCaml with a finer control of aliasing and
effects. We offer stronger static guarantees on the mu-
table store: the language can express non-aliasing and
separation properties. This fine-grained control of own-
ership and effects allows Mezzo to type-check programs
previously deemed unsafe by the OCaml type-checker.

Idioms such as delayed initialization or strong (type-
changing) updates are possible: Mezzo understands the
in-place swap function, which swaps the two components
of a pair. Similarly, a tail-recursive, destination-passing
style version of map can be type-checked.

Mezzo is a language for users: our system tracks effects
more accurately than global effect systems, but we use
dynamic checks (section 3.1) to keep the system simple.
This introduction is hardly self-contained, and the curious
reader may wish to refer to [1] for a full introduction to
the language.

1 Permissions
The key concept in Mezzo is the notion of permission. Per-
missions describe how objects are laid out in memory: they
describe the shape of the heap. Permissions also enable
programmers to control the ownership of objects, which
turns out to be paramount in a concurrent setting.

A permission is written x @ t, meaning “x may be
viewed with type t”. A permission grants access to an
object: x @ ref int asserts that “we” have the right to
access x, and that it is a valid integer reference to boot.
Permissions have no existence at runtime.

A permission may also assert what “others” (other
threads, other parts of the program) are allowed to do,
depending on the mode of the permission. Duplicable per-
missions describe read-only blocks in the heap; such per-
missions can be freely copied and passed to others – effec-
tively sharing access to the block. Exclusive permissions
describe read-write blocks in the heap; they cannot be
copied, that is, the block has a unique owner.

duplicable exclusive
we read-only read-write

others read-only —

Figure 1: Access control

At any point in the program, a set (conjunction) of per-
missions is available; the set may include several permis-
sions that refer to the same object.

1.1 Permission conjunction
The conjunction of two permissions p and q is written
p*q. Our conjunction extends the separating conjunction
of separation logic:

• on exclusive portions of the heap, * behaves as the
usual separating statement: x @ t * x' @ t' asserts
that x and x' cannot point to the same memory loca-
tion – this is a must-not-alias constraint;

• on non-exclusive portions of the heap, the various per-
missions just need to be consistent with each other:
x @ int * x @ int is such a consistent conjunction.

1.2 Manipulating permissions
Here is a datatype definition for duplicable pairs:

data pair a b = Pair { left: a; right: b }

let x = Pair {left = 7; right = 3} creates such a pair,
yielding a new duplicable permission x @ pair int int.
Mezzo automatically unfolds this permission and intro-
duces fresh names for the components, thus yielding the
following conjunction:

x @ Pair { left: =l; right: =r } *
l @ int * r @ int

The left field of x has the singleton type =l: this means
x.left and l refer to the same object – this is a must-alias
constraint. From now on, we will omit the colon and write
Pair { left = l; right = r }.

Should the programmer write let y = x.left, a new
permission will be added, namely y @ =l, which we write
y = l. Thus, a conjunction of permissions can include a
set of equations.

1.3 Example: swapping a pair in place
Objects of type pair are duplicable, hence immutable.
Uniquely-owned, mutable pairs are defined as follows:

exclusive data xpair a b =
XPair { left: a; right: b }

The code from figure 2 demonstrates how to swap the two
components of such a pair (comments indicate the set of
available permissions after the line has been executed).

Notice the change in the permission of x between lines 2
and 3: it accounts for the new aliasing relationship, since
the left field now points to r instead of l. Line 4 works
in a similar fashion.

If we wish, we can trade the final conjunction for a
weaker, more concise permission, namely x @ xpair b a.
This code snippet changes the type of x: we call this a
strong update. We’ll see in the following section how to
turn this code snippet into a function.

1 let x = XPair {left = …; right = …} in (* x @ XPair {left = l; right = r} * l @ a * r @ b *)
2 let t = x.left in (* x @ XPair {left = l; right = r} * l @ a * r @ b * t = l *)
3 x.left <- x.right; (* x @ XPair {left = r; right = r} * l @ a * r @ b * t = l *)
4 x.right <- t (* x @ XPair {left = r; right = t} * l @ a * r @ b * t = l *)

Figure 2: A fragment of code that performs a swap

2 Effects in function types
2.1 Some base types
Tuple types are written (t1, ..., tn). If z is the tuple ex-
pression (x, y), then we have z @ (=x, =y). Furthermore,
if x @ t * y @ u is also available, then we can recombine
these three permissions to obtain z @ (t, u).

Package types allow one to bundle permissions along
with a type: we write (t|p) to store permission p along
with a value of type t. The left-hand-side exists at run-
time; the right-hand side does not.

2.2 Some accurate function types
Let us now consider the simple case of swap1, a function
that takes a pair and returns a new pair with its compo-
nents swapped. The function does not perform an in-place
update: it returns a fresh pair.

val swap1: pair a b -> pair b a
let swap1 (Pair { left = l; right = r}) =

Pair { right = l; left = r }

Functions must be annotated with their signature in
Mezzo. This signature may read like ML, but it conveys re-
quirements about the permissions consumed and returned
by the function. This naïve version of the swap function
fails to type-check; let us now see why.

In order to call swap1 x, the permission x @ pair a b
must be available to the caller, to be consumed by swap1.
Moreover, we understand this permission to be returned
to the caller. Therefore, swap1 x will return to the caller
both the original permission on x and a new value with
type pair b a.

However, after calling swap1, the components of the pair
will be pointed to by both the old pair and the fresh one.
Therefore, for the body of swap1 to type-check, its signa-
ture must demand that a and b be duplicable types.

val swap: duplicable (a, b) =>
pair a b -> pair b a

The body of the function will now type-check. Interest-
ingly enough, the following signature is also valid:

val swap2: (consumes x: pair a b) -> pair b a

Here, the argument x is consumed by the function; that
is, the permission referring to it is not returned to the
caller. This type is more general: we leave it up to the
caller to (implicitly) save a copy of the permission on x, by
duplicating the permission before calling swap2, if possible.

Finally, if we want to write an in-place version of swap
that operates on exclusive pairs, we need to express the
fact that the function modifies the type of its argument.

val xswap: (consumes x: xpair a b)
-> (| x @ xpair b a)

Here, xswap operates in place; therefore, it returns a tuple
with no value components, i.e. the unit type. The permis-
sion on the argument is not returned; instead, a different
permission for x is returned to the caller, reflecting the
fact that the type of x has now changed.

3 Beyond simple permissions
3.1 An adoption mechanism for sharing
Basic permissions only allow for ownership trees; for muta-
ble data structures with sharing, Mezzo uses a mechanism
called adoption. It allows one to alias mutable objects, but
uses runtime checks to ensure only one person at a time
may “view” the mutable object. These dynamic checks
may fail: we believe this is the price to pay to keep the
system reasonably simple and expressive.

3.2 Concurrency
Permissions embody access control: only one thread at a
time may own an exclusive permission, i.e. access a muta-
ble location in the heap. Moreover, the adoption feature is
thread-safe: several threads may try to acquire an object
through the abandon operation, but runtime-checks make
sure only one thread obtains an exclusive permission in
the end. Finally, we provide a library for locks, exposed
as duplicable objects that protect a permission. Therefore,
programs written in Mezzo are data-race free.

The interaction of Mezzo and concurrency is still being
worked on; we do not have sophisticated mechanisms such
as fractional permissions yet, but this is an area of the
design of Mezzo that is likely to evolve.

4 The current status of Mezzo
We are presently working on a prototype type-checker; the
prototype can already type-check simple programs. Chal-
lenges include providing useful error messages, and elabo-
rating heuristics for expressions with no principal type. In
parallel, we are working on a formal proof of correctness
for Mezzo, using the Coq proof assistant. We proved sub-
ject reduction for a core subset of Mezzo; we are looking
forward to extend this proof to the whole language.

References
[1] François Pottier and Jonathan Protzenko. Program-

ming with permissions: an introduction to Mezzo (long
version). http://gallium.inria.fr/~fpottier/
publis/mezzo-tutorial-long.pdf, September 2012.

2

http://gallium.inria.fr/~fpottier/publis/mezzo-tutorial-long.pdf
http://gallium.inria.fr/~fpottier/publis/mezzo-tutorial-long.pdf

	Permissions
	Permission conjunction
	Manipulating permissions
	Example: swapping a pair in place

	Effects in function types
	Some base types
	Some accurate function types

	Beyond simple permissions
	An adoption mechanism for sharing
	Concurrency

	The current status of Mezzo
	Overview of the talk

