
Global Sequence Protocol
A Robust Abstraction for Replicated Shared State

Sebastian Burckhardt1, Daan Leijen1, Jonathan Protzenko1, and
Manuel Fähndrich2

1 Microsoft Research
2 Google

Abstract
In the age of cloud-connected mobile devices, users want responsive apps that read and write
shared data everywhere, at all times, even if network connections are slow or unavailable. The
solution is to replicate data and propagate updates asynchronously. Unfortunately, such mech-
anisms are notoriously difficult to understand, explain, and implement.

To address these challenges, we present GSP (global sequence protocol), an operational model
for replicated shared data. GSP is simple and abstract enough to serve as a mental reference
model, and offers fine control over the asynchronous update propagation (update transactions,
strong synchronization). It abstracts the data model and thus applies both to simple key-value
stores, and complex structured data. We then show how to implement GSP robustly on a client-
server architecture (masking silent client crashes, server crash-recovery failures, and arbitrary
network failures) and efficiently (transmitting and storing minimal information by reducing up-
date sequences).

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases distributed computing, eventual consistency, GSP protocol

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

Many applications can benefit from replicating shared data across devices, because it is
often desirable to keep applications responsive even if network connections are slow or un-
available. Unfortunately, the CAP theorem [1, 5, 18] shows that strong consistency (such
as linearizability or sequential consistency) requires communication with a reliable server or
with a majority partition on each update, which becomes slow or impossible if network con-
nections are slow or unavailable. Since responsiveness is often more important than strong
consistency, researchers and practitioners have proposed the use of various forms of eventual
consistency [9, 10, 16, 21, 29]. In such systems, update propagation and conflict resolution is
lazy, proceeding only when network conditions permit, and replicas may temporarily differ,
while converging to the same state eventually.

Although asynchronous update propagation and eventual consistency offer clear bene-
fits, they are also more difficult to understand, both for system implementors and client
programmers, motivating the need for simple programming models.

Previous work on replicated data types [8, 23, 24] and cloud types [6, 15] suggests that
higher-level data abstractions can mitigate the mental overhead of working with weakly con-
sistent replicas, as they can resolve conflicts automatically and prevent us from accidentally
breaking representation invariants due to unexpected races.

© Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fahndrich;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1022

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.999
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1000 Global Sequence Protocol

To evaluate these ideas in practice, we have implemented the cloud types model [6, 10,
15] in a scripting language for mobile devices. Our experiences suggest that it can indeed
provide significant benefits. In particular, the automation of communication, error handling,
and replication substantially simplifies the app development. However, data abstraction is
not enough, and there remains room for improvement in several aspects:

Reasoning. Client programmers often misunderstand where exactly they risk consistency
errors, erring both on the safe and the unsafe side. Moreover, they are generally wary
of “magical solutions” that do not convey an intelligible mechanism. Above all, what
they need is a simple mental reference model to understand how to use the mechanism
appropriately to write correct programs.
The existing consistency models for cloud types are either too abstract for non-experts
in memory consistency (e.g. the axiomatic model in [10]), or too complicated and overly
general for the situation at hand (e.g. the revision diagram model in [6, 10]).
Judicious Synchronization. While asynchronous update propagation is sufficient in most
situations, for many apps we encountered a few situations where strong synchronization
is needed (e.g. finalizing a reservation, ending an auction, or joining a game with an
upper limit on the number of players). Thus, it is important that programmers can
easily choose between synchronous and asynchronous reads and updates (and pay the
cost of synchronicity only when they ask for it).
Robust Implementations. Implementations must be carefully engineered to hide failures
of clients, the network, and the server, and to minimize the amount of data stored and
transmitted.
For example, The cloud types implementations in [6, 15] do not discuss failures of any
kind, and transmit the entire state in each message, which is impractical unless the
amount of data shared is small. Moreover, the pushing and pulling of updates between
client and server cannot proceed concurrently but is forced to alternate, which introduces
significant delays.

In this paper, we describe several improvements in these areas. Specifically, we make the
following contributions:

We introduce the global sequence protocol (GSP), an operational model describing the
system behavior precisely, yet abstractly enough to be suitable as a simple mental model
of the replicated store. It is based on an abstract data model that can be instantiated
to any data type, be it a simple key-value store, or the rich cloud types model. We
compare GSP to the TSO (total store order) memory model and discuss its consistency
properties.
We show how GSP supports judicious use of synchronization. Push and pull operations
give programmers precise control over the update propagation, and flush allows them
to perform reads and updates synchronously whenever desired, thus recovering strong
consistency.
We present a detailed system implementation model of GSP that provides significant
advantages:
Robust Streaming. Updates are streamed continuously in both directions between server
and client. We show precisely how clients may crash silently, how the server may fail
and recover, how connections are established, how they can fail, and how they can be
reconnected and resume transmission correctly, without disrupting the execution of the
client program at any point.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1001

Reduction. Update sequences often exhibit redundancy (for example, if a variable is
assigned several times, only the last update matters). We show how to eagerly reduce
update sequences, storing them in reduced form in state or delta objects. This means
that our implementation stores and propagates a minimal amount of information only.
We have implemented the ideas presented in this paper as an extension of TouchDevelop,
a freely available programming language and development environment. Thus, we have
made the cloud types programming model publicly available online for inspection and
experimentation, and we provide links to a dozen example applications.

Overall, our work marks a big step forward towards a credible programming model for
automatically replicated, weakly consistent shared data on devices, by providing both an
understandable high-level system and data model, and a robust implementation containing
powerful and interesting optimizations.

2 Overview

To write correct programs, we need a simple yet precise mental model of the store. In a
conventional setting, we assume a single-copy semantics where client programs can read and
write the shared data atomically. But to tolerate slow and unreliable connections, we must
find an alternative model that accounts for the existence of multiple copies, i.e. multiple
versions of the shared data.

To this end, we introduce in this paper an operational model of a replicated store, called
Global Sequence Protocol (GSP). It is based on the simple idea that clients eventually agree
on a global sequence of updates, while seeing a subsequence of this final sequence at any
given point of time.

We introduce GSP in four stages. First, we clarify how to abstract the data operations
(section 3). Then, we introduce and explain Core GSP, a basic version of GSP that does
not include transactions or synchronization (section 4), and discuss various aspects of its
consistency model. In section 5 we present transactional GSP, and explain the benefits
of its transactions and synchronization support. In section 6, we show in detail how the
GSP protocol can be realistically implemented on a client-server topology in a way that
transparently hides channel failures, silent crashes of clients, and crash-recovery failures of
the server. A cornerstone of the implementation is the use of reduction, which eliminates
redundancy from update sequences.

We then conclude the paper by reporting on our practical experiences with implementing
and operating GSP as an extension of TouchDevelop (section 7), and comparing with related
work (section 8).

3 Data Models

In our experience, the key mental shift required to understand replicated data is to un-
derstand program behavior as a sequence of updates, rather than states. To this end, we
characterize the shared data by its set of updates and queries, and represent a state by the
sequence of updates that have led to it.

Sequence notations. We write T* for the type of sequences of type T. Furthermore, []
is the empty sequence, s1 · s2 is the concatenation of two sequences, s[i] is the element at
position i (starting with 0), and for a nonempty sequence s (s.length > 0), the expression
s[1..] denotes the subsequence satisfying s = s[0] · s[1..].

ECOOP’15

1002 Global Sequence Protocol

Rather than fixing the set of update and read operations upfront, we represent them
using abstract types for updates, reads, and values.

abstract typeUpdate,Read,Value;

Likewise, we abstractly represent the semantics of operations by a function rvalue that takes
a read operation and a sequence of updates, and returns the value that results from applying
all the updates in the sequence to the initial state of the data:

function rvalue : Read × Update * → Value

We call a particular binding for Update, Read, Value and rvalue a data model.

3.1 Examples
Register. We can define a data model for a register using the following update and read
operations
Update = { wr(v) | v inValue }
Read = { rd }
and define the value returned by a read operation to be the last value written:
rvalue(rd, s) = match s with

[] → undefined
s0 · wr(v) → v

Counter. We can define a data model for a counter as follows:
Update = { inc }
Read = { rd }
rvalue(rd, s) = s.length
where a read simply counts the number of updates.

Key-value Store. Perhaps the most widely used data type in cloud storage is the key-
value store, which will serve as our main running example. We can define its data model as
follows:
Update = { wr(k,v) | k,v inValue }
Read = { rd(k) | k inValue }

rvalue(rd(k), s) = match s with
[] → undefined
s0 · wr(k0,v) → if (k = k0) then v else rvalue(rd(k),s0)

Reduction of Update Sequences. For readers who may be alarmed by the prospect of
having to store and transmit long update sequences: note that we will introduce state and
delta objects in section 6.1, which store update sequences in reduced form (for example, a
key-value store needs to store only the last update for a given key).

4 Core GSP

We show a basic version of the global sequence protocol in Fig. 1, which includes the data
operations (reads and updates), but omits synchronization and transactions for now.

The protocol specifies the behavior of a finite, but unbounded number of clients, by
defining the state of each client, and transitions that fire in reaction to external stimuli. The
transitions fall into two categories: the interface to the client program (from where update
and read operations arrive), and the interface to the network (from where messages arrive).

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1003

role Core_GSP_Client {

known : Round * := []; // known prefix of global sequence
pending : Round * := []; // sent, but unconfirmed rounds
round : N := 0; // counts submitted rounds

// client program interface
update(u : Update) {
pending := pending · u;
RTOB_submit(new Round { origin= this, number = round ++ , update= u });

}
read(r : Read) : Value {
var compositelog := known · pending;
return rvalue(r , updates(compositelog));

}

// network interface
onReceive(r : Round) {
known := known · r ;
if (r .origin = this) {
assert(r = pending[0]); // due to RTOB total order
pending := pending[1..];

}
}

// rounds data structure
class Round { origin : Client, number : N, update : Update }
function updates(s : Round *) : Update * { return s[0].update · · · s[s.length - 1].update; }

}

Figure 1 Core Global Sequence Protocol (GSP).

The clients communicate using reliable total order broadcast (RTOB), a group commu-
nication primitive that guarantees that all messages are reliably delivered to all clients, and
in the same total order. RTOB has been well studied in the literature on distributed sys-
tems [13, 17], and is often used to build replicated state machines. It can be implemented
on various topologies (such as client-server or peer-to-peer) and for various degrees of fault-
tolerance. We describe one particular such implementation and important optimizations in
Section 6.
Core GSP stores and propagates updates as follows.

Each client stores a currently known prefix of the global update sequence in known, and
a sequence of pending updates in pending.
When the client program issues an update, we (1) append this update to the sequence
of pending updates, and (2) wrap the update into a Round object, which includes the
origin and a sequence number, and broadcast the round.
When receiving a round, we append the contained update to the known prefix of updates.
Moreover, if this round is an echo (it originated on the same client), we remove it from

ECOOP’15

1004 Global Sequence Protocol

the pending queue.

Since RTOB delivers messages in the same order to all recipients, the known prefixes in the
clients (while not necessarily the same length at any given time) always match. Also, an
echo of a round always matches the first (oldest) element of the pending queue.

When a client issues a read, we combine the update sequences in the known prefix and in
the pending operations to determine the value returned by the read. Thus, it appears to the
client program that its own updates have taken effect, before they are confirmed (i.e. before
they are processed and echoed by the RTOB). This consistency property is sometimes called
Read-my-Writes [28]).

An important point is that we cannot rely on RTOB being fast: at best, it requires a
server roundtrip, and at worst, it can be stalled for prolonged periods by a failure or by
a network partition, for example if the client is offline. Thus, making the updates in the
pending queue visible to reads is essential for applications to appear responsive.

Example. We can implement a causally consistent key-value store by using the read
rd(k) and write wr(k,v) operations defined earlier. Then clients can always read and write
any key without waiting for communication. In particular, the store remains operational
even on clients that are temporarily offline. If two clients write a different value for the same
key, they may temporarily see a different value, but once both updates have gone through
the RTOB, their relative order in the global sequence determines the final value: the last
writer wins.

4.1 Beware Consistency

By design, Core GSP is not strongly consistent: updates are asynchronous and take effect
with a delay. Programmers who are not aware of this can easily run into trouble. For
example, consider a program that tries to increment a value for a given key by reading it,
adding one, and then writing it back:

var x = rd("counter")
wr("counter", x + 1)

This counter implementation does not count correctly if called concurrently. For example,
two readers may both read the current value 0, and then both issue an update wr(“counter”,
1). Thus, the final value (once both updates have gone through RTOB) is 1, not 2 as we
would like.

We show in section 5 how to extend Core GSP with synchronization operations that can
be used to enforce strong consistency where needed (at the expense of requiring communic-
ation, and losing the benefit of offline availability).

However, in many cases, there is a more elegant solution that avoids expensive synchron-
ization. The trick is to use a richer data model that lets us express the update directly, at a
higher level. For example, if the data model supports updates of the form add(k,v), we can
increment a counter by calling

add("counter", 1)

which always counts correctly: all add operations appear in the global sequence, and the
read operation can correctly accumulate them. In general, the idea of including application-
specific update operations in the data model is a powerful trick that can help to avoid
synchronization in many situations.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1005

4.2 Cloud Types

Although key-value stores are a powerful primitive, they are cumbersome and error-prone
to work with directly. Productivity is greatly aided by a capability to declare structured
data with richer update and query semantics.

Luckily, it turns out we can quite easily define higher level data types on top of the
data model abstraction (section 3). In particular, we can implement full Cloud Types as
proposed by previous work [6, 15]. Cloud types allow users to define and compose all of the
data type examples given earlier (registers, counters, key-value stores), plus tables, which
support dynamic creation and deletion of storage.

Cloud types also help to mitigate consistency issues, since concurrent updates are handled
in a way that is consistent with the semantics of the type. For example, all integer-typed
fields support an add(n) operation.

In the extended technical report [12] we show how to define cloud types as a data model,
and how to implement state and delta objects that optimally reduce the update sequences.

4.3 Eventual Consistency

Although GSP does not provide strong consistency, its consistency guarantees are still as
strong as possible for a protocol that remains available under network partitions: it is
quiescently consistent, eventually consistent, and causally consistent (as defined in [9], for
example).

It is quiescently consistent, because when updates stop, clients converge to the same
known prefix with empty pending queue (this is the original definition of eventual consistency
as introduced in [29]). It is eventually consistent (as defined in [7–10]) because all updates
become eventually visible to all clients, and are ordered in the same arbitration order. It is
causally consistent because an update U by some client C cannot become visible to other
clients before all of the updates (let’s call them V) that are visible to client C at the time
it performs U. The reason is that the updates V consist of (1) the common server prefix,
or (2) pending updates, which are all guaranteed to become visible to other clients no later
than U.

Comparison to TSO. Core GSP appears conceptually (and even in name) quite sim-
ilar to TSO [31] (total store order), a widely used relaxed memory model that queues stores
performed by a processor in a local store buffer, from where they drain to memory asynchron-
ously. This naturally leads us to ask the question: is Core GSP observationally equivalent
to TSO? Interestingly, the answer depends on the notion of observational equivalence. If we
assume that the relative order of operations on different clients is not directly observable
(which is a common assumption for memory models, where clients are processors that do
not communicate directly), the two are indeed equivalent. However, if the relative order
of operations on different clients is observable (which is a reasonable assumption for dis-
tributed interactive applications with external means of communication), then they are not
equivalent, as the following scenario illustrates.

Consider that the key-value store data model represents shared memory in a multipro-
cessor, which initially stores 0 for each address, and consider two clients performing the
following interleaving of operations (where each column shows the operation of one client,
and vertical placement defines the observed interleaving of the operations):

ECOOP’15

1006 Global Sequence Protocol

wr(A,2)
.
.
.
rd(B) → 0

.
wr(B,1)
wr(A,1)
rd(A) → 2
.

This interleaving is not observable on TSO: since the client on the right sees rd(A) return 2,
it must be the case that wr(A,2) has drained to memory after wr(A,1) drained. Since writes
by the same client drain to memory in order, this implies that wr(B,1) must have drained
to memory sometime before rd(A) returns, and thus before rd(B) is called, thus the rd(B)
cannot return 0. However, under GSP, this interleaving is possible, because rd(B) may be
called before the RTOB delivers the update for wr(B,1) to the client on the left.

5 Transactional GSP

The Core GSP protocol we introduced in the previous section is already quite useful. How-
ever, it can be further improved by adding support for transactions and synchronization.

In this section, we introduce transactional GSP, which adds the synchronization oper-
ations push and pull, and the synchronization query confirmed. These additions give the
programmer more control. The transactional GSP protocol is shown in Fig. 2. It is derived
from Core GSP (Fig. 1), but improves the design in the following three aspects.

Update Transactions. Often, a client program updates several data items at a time,
and those updates are meant to be atomic. For example,

wr("items", "[key1,key2]")
wr("key1", "something")
wr("key2", "something else")

In the global sequence model, the updates may arrive at another client at different times,
thus that client may see an intermediate state that it was not supposed to observe.

To solve this problem, GSP uses a transactionbuffer . Updates performed by the client
program go into this buffer. All updates in the buffer are broadcast in a single round when
the client program calls push, and only then. They effectively form an ‘update transaction’
that is persisted and transmitted atomically. Updates in the transactionbuffer are included
in the composite log, thus they are immediately visible to subsequent reads.

Read Stability. In the global sequence protocol, an update arriving from the network
can interleave in unpredictable ways with the locally executing client program. In particular,
if a client program performs two reads in a sequence, the second read may return a different
value. In our experience, it is very difficult to write correct programs under such conditions
(cf. data races in multiprocessor programs).

To solve this problem, GSP uses a receivebuffer . Received rounds are stored in this
buffer. All rounds in the receivebuffer are processed when the client program calls pull, and
only then. Thus, the client program can rely on read stability - the visible state can change
only when issuing pull, or when performing local updates.

Confirmation Status. It is often desirable to find out if an update has committed (i.e.
is now part of the global sequence constructed by the RTOB). Since this is impossible for
client programs to detect in the global sequence protocol, we add a new function confirmed
to the interface which returns true iff there are no local updates awaiting confirmation.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1007

roleGSP_Client {
known : Round * := []; // known prefix of global sequence
pending : Round * := []; // sent, but unconfirmed rounds
round : N := 0; // counts submitted rounds
transactionbuffer : Update * := [];
receivebuffer : Round * := [];

// client program interface
update(u : Update) { transactionbuffer := transactionbuffer · u; }
read(r : Read) : Value {
var compositelog := updates(known) · updates(pending) · transactionbuffer ;
return rvalue(r , compositelog);

}
confirmed() : boolean { return pending = [] && transactionbuffer = [] }
push() {
var r := new Round { origin= this, number = round ++ , updates= transactionbuffer};
tob_submit(r);
pending := pending · r ;
transactionbuffer := [];

}
pull() {
foreach(var r in receivebuffer) {
known := known · r ;
if (r .origin = this) { pending := pending[1..]; }

}
receivebuffer := [];

}

// network interface
onReceive(r : Round) { receivebuffer := receivebuffer · r ; }

// rounds data structure
class Round { origin : Client, number : N, updates : Update }
function updates(s : Round *) : Update * { return s[0].updates · · · s[s.length - 1].updates;}

}

Figure 2 Transactional GSP (Global Sequence Protocol)

ECOOP’15

1008 Global Sequence Protocol

5.1 Discussion

We now discuss several interesting aspects of the transactional GSP model related to con-
sistency and synchronization.

On-Demand Strong Consistency. GSP is sufficiently expressive to allow client pro-
grams to recover strong consistency when desired. To this end, we can write a flush operation
that waits for all pending updates to commit (and receives any other updates in the mean-
time):

flush() {
push();
while (! confirmed()) { pull(); }

}

Using flush, we can implement linearizable (strongly consistent) versions of any read oper-
ation r or update operation u as follows:

synchronous_update(u) { update(u); flush(); }
synchronous_read(r) { flush(); read(r); }

These synchronous versions exhibit a single-copy semantics: they behave as if the read or
update were executed directly on the server.

In practice, we found that for most applications, the majority of reads and updates need
not be strongly consistent. However, there often remain a few situations (e.g. finalizing
a reservation, ending an auction, or joining a game with an upper limit on the number
of players) where true arbitration is required, and where we are willing to pay the cost of
synchronous communication (i.e. wait for the server to respond, or even block if offline).
The ability of GSP to handle both synchronous and asynchronous reads and updates within
the same framework is thus a major advantage.

Automatic Transactions. A prime scenario for GSP is the development of user-
facing reactive event-driven applications, such as web applications or mobile apps. In that
setting, we found it advantageous to automate the push and pull operations. Since the client
program is already designed for cooperative concurrency and executes in event handlers, our
framework can execute the following yield operation automatically between event handlers,
and repeatedly when the event queue is empty:

yield() {
push();
pull();

}

All of the applications we wrote using the TouchDevelop platform rely on automatic trans-
actions.

Comparison of Transactions. Our update transactions are different from conven-
tional transactions (read-committed, serializable, snapshot isolation, or parallel snapshot
isolation) since they do not check for any read or write conflicts. In particular, they never
fail. The advantage is that they are highly available [3], i.e. progress is not hampered
by network partitions. The disadvantage is that unlike serializable transactions (but like
read-committed, snapshot, or parallel snapshot transactions), they not preserve all data
invariants.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1009

6 Robust Streaming

The GSP model described in the previous sections abstracts away many details that are
important when we try to implement it in practice. In particular, it assumes that we have
a RTOB implementation, it does not model failures of any kind, and it suffers from space
explosion due to ever-growing update sequences.

In this section, we show that all of these issues are fixable without needing to change
the abstract GSP protocol. Specifically, we describe a robust streaming server-client im-
plementation of GSP. It explicitly models communication using sockets (duplex streams)
and contains explicit transitions to model failures of the server, clients, and the network.
Moreover, it eliminates all update sequences, and instead stores current server state and
deltas in reduced form. Importantly, it is robust in the following sense:

Client programs never need to wait for operations to complete, regardless of failures in
the network, server, or other clients.
Connections can fail at any time, on any end. New connections can replace failed ones
and resume transmission correctly.
The server may crash and recover, losing soft state in the process, but preserving per-
sistent state. The persisted server state contains only a snapshot of the current state
and the number of the last round committed by each client. It does not store any logs.
Clients may crash silently or temporarily stop executing for an unbounded amount of
time, yet are always able to reconnect. In particular, there are no timeouts (the protocol
is fully asynchronous). Permanent failures of clients cannot disrupt the server, other
clients, or violate the consistency guarantees.

Despite the more realistic communication and the possibility of channel and server fail-
ures, the streaming protocol remains faithful to the original protocol: we prove that it is
a refinement, that is, all of its behaviors correspond to a behavior of the abstract protocol
(transactional GSP, see Fig. 2). Thus, programmers may remain blissfully unaware of these
complications.

6.1 States and Deltas
The streaming model does not store any update sequences (neither in the client, nor on the
server). Instead, it eagerly reduces such sequences, and stores them in reduced form, either
as state objects (if the sequence is a prefix of the global update sequence) or as delta objects
(if the sequence is a segment of the global update sequence).
abstract type State
abstract typeDelta
Deltas are produced by appending updates, or by reducing several deltas, and states are
produced by applying deltas to the initial state:
const initialstate : State
function read : Read × State → Value
function apply : State × Delta * ⇀ State
const emptydelta : Delta
function append : Delta × Update ⇀ Delta
function reduce : Delta * ⇀ Delta
Note that we define some of these functions as partial, reflecting that some updates may be
invalid (in the cloud types model, these include incorrectly typed field updates or creation

ECOOP’15

1010 Global Sequence Protocol

class Channel {
client : Client; // immutable
Channel(c : Client) { client := c; }

// duplex streams
clientstream : Round * := []; // client to server
serverstream : (GSPrefix | GSSegment) * := []; // server to client

// server-side connection state
accepted : boolean := false; // whether server has accepted connection

// client-side connection state
receivebuffer : (GSPrefix | GSSegment) * ; // locally buffered packets
established : boolean := false; // whether client processed 1st packet

}

Figure 3 Channel Objects.

of a row with a duplicate unique identifier, for example).
Example. For the key-value store, the implementation of this abstract interface is

straightforward. We can represent both State and Delta as maps from keys to values, and
define reduce, append and apply to simply merge such mappings (where the last write wins).

Correctness. Intuitively, a state-and-delta implementation correctly represents a given
data model if the result of reading a state s by means of calling read(r ,s) yields the same
result as reading rvalue(r ,u1 · un) where u1 · un is the combined sequence of updates that
led to the state s. More formally, we can define a overloaded representation relation C that
relates state and delta objects to the update sequences they represent, as follows:

On Delta × Update * , let C be the smallest relation such that (1) emptydelta C [], and
(2) d C a implies append(d,u) C a · u for all updates u, and (3) d1 C a1 ∧ · · · ∧ dn C an

implies reduce(d1 · · · dn) C a1 · · · an.

On State × Update * , let C be the smallest relation such that (1) initialstate C [], and
(2) sC a ∧ d1 C a1 ∧ · · · ∧ dn C an implies apply(s,d1 · · · dn) C a · a1 · · · an.

Now, we define a state-and-delta implementation to be correct if and only if s C a implies
read(r ,s)= rvalue(r ,a) for all reads r , states s and update sequences a.

Optimality. Subtleties arises when we care about space leaks. For the key-value store,
for example, a sloppy implementation of the state object may fail to remove a key whose
value is set to undefined from the map. We call such an implementation non-optimal,
because some states occupy more space than needed (there exists a smaller representation
of the same update sequence that is indistinguishable by queries).

Engineering state and delta objects to be optimal can be quite challenging once richer
data types are considered, for example regarding dynamic creation and deletion of table
rows. In the extended technical report [11, 12] we show an example of such a nontrivial
optimal implementation of state and delta objects for the cloud types data model.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1011

6.2 Channels
We model the network and communication sockets using Channel objects (Fig. 3). Channels
contain two streams, one for each direction. We model streams using sequences, by adding
elements on the right and removing them on the left. Channel objects also contain server-
side and client-side connection state that can be read and written only on the respective
side (i.e. it is not used for communication).

The sequence clientstream contains the rounds that the client sends to the server. The
Round objects are defined as in GSP, except that they contain a delta object in place of a
sequence of updates:

structRound {origin : Client; number : N; delta : Delta; }

The sequence serverstream contains reduced segments of the global sequence that the server
streams to the client. When sending on a channel, a server always starts with a GSPrefix
object (containing a State object), and then keeps sending GSSegment objects (containing
Delta objects).

classGSPrefix { // represents a prefix of the global update sequence
state : State := initialstate;
maxround : (Client ⇀ N) := {};
method apply(s : GSSegment) {
foreach((c,r) in s.maxround) {maxround[c] := r ; }
state := apply(state, s.delta);

} }
classGSSegment { // represents an interval of the global update sequence
delta : Delta := emptydelta;
maxround : (Client ⇀ N) := {};
method append(r : Round) : void {
maxround[r .origin] := r .number ;
delta := reduce(delta · r .delta);

} }
The method apply extends a prefix with a segment, and the method append extends a
segment with a round. Both GSPrefix and GSSegment contain a partial map maxround
that records the maximal client round of each client that is contained in the segment. Thus
a client c receiving a prefix or segment can look at maxround[c] to determine the latest
confirmed round.

6.3 Server
(Fig. 4) The server state is separated into persistent state (serverstate), which stores the
current state and the number of the last round of each client that has been incorporated into
the state, and soft state (connections) which stores currently active connections. A connec-
tion is started by the accept_connection transition, which adds it to the active connections
connections and sets the accepted flag. It then sends the current state (i.e. the reduced
prefix of the global sequence) on the channel.

During normal operation, the server repeatedly performs the processbatch operation. It
combines a nondeterministic number of rounds (we use the * in the pseudocode to denote
a nondeterministic choice) from each active connection into a single segment. This segment
stores all updates in reduced form as a delta object. We then append this segment to the
persistent state (which applies the delta to the current state, and updates the maximum

ECOOP’15

1012 Global Sequence Protocol

class StreamingServer {
// persistent state
serverstate : GSPrefix := newGSPrefix();
// soft state
connections : (Client ⇀ Channel) := {};
// transitions
accept_connection(ch : Channel) {
requires ! ch.accepted && connections[ch.client] = null;
ch.accepted := true;
connections[ch.client] := ch;
ch.serverstream := ch.serverstream · serverstate; // send first packet: current state

}
processbatch() {
var s := newGSSegment();
// collect updates from all incoming segments
foreach((c,ch) in connections)
receive(s, ch, *);

// atomically commit changes to persistent state
serverstate := serverstate.apply(s);
// notify connected clients
foreach((c,ch) in connections)
ch.serverstream := ch.serverstream · s;

}
drop_connection(c :Client) { connections[c] := null; }
crash_and_recover() { connections := {}; }
// auxiliary functions
receive(s : GSSegment, ch :Channel, count : int) {
requires count <= ch.clientstream.length;
foreach(r in ch.clientstream[0..count])
s.append(r);

ch.clientstream := ch.clientstream[count..];
}

}

Figure 4 State and Transitions of the Streaming Server.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1013

round number per client), and send it out on all active channels.
The transition drop_connection models the abrupt failure or disconnection of a channel

at the server side - but not on the client, who may still send and receive packets until it in
turn drops the connection. Note that a client may reconnect later, using a fresh channel
object, and will resend rounds that were lost in transit when the channel was dropped.

The transition crash_and_recover models a failure and recovery of the server, which
loses all soft state but preserves the persistent state.

6.4 Client
(Fig. 5,6) The fields of the client are similar to the transactional GSP client (Fig. 2), but
with the following differences:

1. We use State and Delta objects instead of update sequences: known is now a State object,
and transactionbuf is a Delta object.

2. There is a variable channel that contains the current connection (or null if there is none).
3. There is a new pushbuffer , which holds updates that were pushed but have not been sent

on any channel yet (e.g. because there was no channel established at the time of the
push). rds_in_pushbuf counts the number of rounds in the pushbuffer.

4. The receivebuffer is now stored inside the channel object.

The read transition computes the visible state by calling curstate which (nondestructively)
applies the delta objects in pending, pushbuf and transactionbuf to the state object in known.

The update transition adds the given update to the transaction buffer, and clears the
tbuf_empty flag (since delta objects do not have a function to query whether they are empty,
we use a flag to determine whether the transaction buffer is empty).
The confirmed transition checks whether updates are pending in pending or transactionbuf
or pushbuffer .

The push transition moves the content of the transactionbuffer to the pushbuffer, by
combining and reducing the respective delta objects. The pull transition processes all packets
in the receive buffer (which we model as part of the channel object), if any. When processing
a packet, we track if this is the first packet received on this channel by checking the established
flag.

If the packet is not the first packet (established = true), it is a GSSegment packet
containing a delta object and representing an aggregation of one or more rounds. This
delta object is then applied to known. Since the segment may also contain (reduced)
echoes of one or more unconfirmed rounds, we determine the latest confirmed round
s.maxround[this] and remove all rounds up to that one from the pending queue (in ad-
just_pending_queue).
If the packet is the first packet, it is a GSPrefix packet containing the latest server
state. We assign it to known and set established to true. However, we need to do
some more work: since there may have been other channel objects used previously by
this client, and dropped by the server at some point, we need to take care to resume the
streaming of rounds with the correct round (to avoid losing or duplicating rounds). Since
s.maxround[this] tells us the latest committed round on the server, we can ensure this by
first removing confirmed rounds from the pending queue (using adjust_pending_queue),
and then resending any rounds remaining in the pending queue.

The receive transition straightforwardly moves a packet from the serverstream into the
receive buffer. The drop_connection transition models loss of connection at the client side.

ECOOP’15

1014 Global Sequence Protocol

class StreamingClient {
known : State := emptystate; // known prefix
pending : Round * := []; // sent, but unconfirmed rounds
round : N := 0; // counts submitted rounds
transactionbuf : Delta := emptydelta;
tbuf_empty : boolean := true;
channel : Channel := null;
pushbuf : Delta := emptydelta; // updates that were pushed, but not sent yet
rds_in_pushbuf : N := 0; // counts the number of rounds in the pushbuffer
// client interface transitions
read(r : Read) : Value { return read(r , curstate()); }
update(u : Update) {
transactionbuf := transactionbuf .append(u);
tbuf_empty := false;

}
confirmed() : boolean {
return pending = [] && rds_in_pushbuf = 0 && tbuf_empty;

}
push() {
pushbuf := pushbuf .append(transactionbuf);
transactionbuf := []; tbuf_empty := true;
rds_in_pushbuf := rds_in_pushbuf + 1; round := round + 1;

}
pull() {
while (channel != null && channel.receivebuffer .length != 0) {
var s := channel.receivebuffer [0];
channel.receivebuffer := channel.receivebuffer [1..]
if (channel.established) // not the first packet received on this channel
assert(s instanceof GSSegment);
known := known.append(s);
adjust_pending_queue(s.maxround[this]);

} else {
channel.established := true;
assert(s instanceof GSPrefix); // first packet contains latest server state
known := s.state; // replace known prefix
// resume sending rounds (remove confirmed, resend unconfirmed)
adjust_pending_queue(s.maxround[this]);
channel.clientstream := channel.clientstream · pending;

}
}

}
// continued in next figure

Figure 5 States and transitions of the Streaming Client (part 1 of 2).

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1015

// class Client (continued)
// auxiliary functions
function curstate() : State {
return apply(known, deltas(pending) · pushbuf · transactionbuf);

}
function deltas(seq : Round *) : Delta { return seq[0].delta · · · seq[seq.length - 1].delta; }
procedure adjust_pending_queue(upto : N) {
while (upto >= pending[0].round) { pending := pending[1..]; }

}
// network transitions (nondeterministic)
receive() {
requires channel != null && channel.serverstream.length > 0;
channel.receivebuffer := channel.receivebuffer · channel.serverstream[0];
channel.serverstream := channel.serverstream[1..];

}
drop_connection() { channel := null; }
send_connection_request() {
requires channel == null;
channel := new Channel(this);

}
send() {
requires channel != null && channel.established && rds_in_pushbuf > 0;
var r := new Round { origin= this, round = round - 1, delta= pushbuf };
pending := pending · r ;
channel.clientstream := channel.clientstream · r ;
pushbuf := [];
rds_in_pushbuf := 0;

}
}

Figure 6 States and transitions of the Streaming Client (part 2 of 2).

ECOOP’15

1016 Global Sequence Protocol

It removes the channel object from the client - but not from the server, who may still send
and receive packets on the channel until it in turn drops the connection. The send transition
requires that there is an established channel (this is is important to handle channel recovery
correctly, as explained earlier). It sends one or more rounds (stored in pushbuf) as a single
cumulative round with the latest pushed round number, and appends it to the pending
queue. Note that in practice, we found it sensible to add additional preconditions on send,
to limit the number of rounds in the pending buffer, and to avoid overflowing buffers in the
network layer.

6.5 Refinement Proof
We now prove that the streaming client-server protocol (Fig. 3,4,5,6) is a correct imple-
mentation, or a refinement, of the transactional GSP protocol (Fig. 2). This means that
programmers need not worry about the intricacies of the former, but can safely assume that
they are writing code for the latter: in particular, channel and server failures remain hidden
beneath the protocol abstraction.

We define the set TE of interface events to contain all expressions

read(c,r)(v) | update(c,u) | confirmed(c)(v) | push(c) | pull(c)

These events represent calls by the client program happening on some client c, and possibly
returning a value v. The read and update events take a read operation r or an update
operation u as a parameter.

We can now define a trace to be a finite or infinite sequence of interface events, and say
a protocol Impl refines a protocol Spec if all traces of Impl are also traces of Spec. Since
the events in the traces capture all interactions between the client program and the storage
subsystem, refinement in this sense implies that if we run client programs on protocol Impl,
they cannot detect a difference, i.e. all observable outcomes are consistent with running on
protocol Spec.

For our proof, we use standard refinement proof methodology. We formalize a protocol as
a labeled transition system (Σ, σi, T, δ) where Σ is a set of states, σi ∈ Σ is the initial state,
T is a set of transition labels, and δ ⊂ Σ× T ×Σ is a transition relation. We write 〈σ, t, σ′〉
to represent an element of δ, that is, a transition with label t from state σ to state σ′, and
write 〈σ0, t1, σ1, t2, . . . , tn, σn〉 for a sequence of transitions with labels t1, . . . , tn (note that
for n = 0, this is an empty transition sequence containing just a single state 〈t1〉).

We define transition systems for the implementation and specification to be (ΣI , σ
i
I , TE∪

TI , δI) and (ΣS , σ
i
S , TE ∪TS , δS), respectively, where the sets TI , TE , TS represent categories

of transitions, as follows.
We distinguish between external transitions TE , which are exactly the interface events

we have already defined above, and internal transitions TS and TI of the specification and
implementation, respectively. Internal transitions usually represent nondeterministic events
such as sending, receiving, or processing of messages that are not visible to the client pro-
gram.

We define the set TS of internal transitions of the specification to contain all expressions

onreceive(c,r) | process(r)

where c ranges over clients and r ranges over rounds (the rounds data structure). The
onreceive transition is the handler for receiving an RTOB message in Fig. 2. The process
transition represents the RTOB commit, i.e. the moment where a round becomes ordered
into the global sequence. It is not explicitly listed in Fig. 2, since the RTOB is described

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1017

abstractly there.
Naturally, the implementation has many more internal transitions than the specifica-

tion, since it has more “moving parts”. We define the set TI of internal transitions of the
implementation as

receive(c) | send(c) | processbatch() | crash_and_recover()
| client_drop_connection(c) | server_drop_connection(ch)
| accept_connection(ch) | send_connection_request(c)

where c ranges over clients and ch ranges over channel objects. All of these correspond to
procedures with the same name in the code (Fig. 4,5,6).

We would like to emphasize that although we need to carefully consider all of these
internal implementation transitions when proving refinement, the end result is that the
programmer can be blissfully unaware of them.

6.5.1 Proof structure
To prove refinement, we construct an extended simulation relation

R ⊆ ΣI × ΣS × ΣA,
where ΣI is the implementation state, ΣS is the specification state, and ΣA is auxiliary

state.
In our case, ΣA is only needed to record history variables (we do not need prophecy

variables as introduced in [2]). This means that ΣA is updated according to some update
function uA that defines an auxiliary state uA((σI , σS , σA), t, σS) for each triple (σI , σS , σA)
and each transition 〈σI , t, σ

′
I〉.

The following conditions capture the requirements on R to be a simulation. It is easy to
see that if such an R exists, it implies trace refinement as desired.

1. R contains the initial state σi = (σi
I , σ

i
S , σ

i
A)

2. for all tuples (σI , σS , σA) ∈ R and implementation transitions 〈σI , t, σ
′
I〉, there exists a

specification transition sequence 〈σ = σ0
S , t1, σ

1
S , t2, . . . , tn, σ

n
S〉 (where n ≥ 0) satisfying

the following conditions:

a. If t ∈ TI (that is, t is an externally unobservable transition of the implementation),
then all the labels t1, . . . , tn must be in TS (i.e. must be internal transitions of the
specification).

b. If t ∈ TE (that is, t is an externally observable transition of the implementation), then
there must exist an i such that t = ti (one specification transition must match), and
tj ∈ TS for j 6= i (the other specification transitions must be externally unobservable).

c. When we move all three state components forward, that is, when we (1) apply the
implementation transition to the implementation state, (2) apply the specification
transition sequence to the specification state, and (3) update the auxiliary state, we
stay in the relation: (σ′

I , σ
n
S , uA((σI , σS , σA), t, σS)) ∈ R.

To define this relation and prove the obligations, we construct a “combined transition sys-
tem” in the extended technical report [12] whose state is Σ = ΣI × ΣS × ΣA, and which
has the transitions described in (2.c) above. The simulation relation R captures the relation
between rounds, clients, global sequences, and channels in the specification and the imple-
mentation. We can think of R as an invariant of this combined transition system, rather
than a simulation relation. This helps to organize the proof in a familiar way, by stating
invariants and transitions, and proving preservation.

ECOOP’15

1018 Global Sequence Protocol

6.6 Further optimizations
In our prototype we implemented a few additional optimizations left out here for simplicity.
They include:

The server caches recent deltas. When clients reconnect, and the server still has the
relevant deltas in its cache, the server sends only the deltas needed instead of the whole
state.
The server, when sending segments to a client c, includes not the whole maxround, but
only maxround[c].
As written, reads are potentially inefficient, thus some optimizations may be required.
For example, in our implementation of the cloud types model, we store updates of fields
inside objects representing the fields, and we cache the result of expensive reads, such as
table enumerations.

The implementation presented here uses a single server, which is appropriate for modest
read/write loads. The server can be easily made reliable, even on unreliable cloud compute
infrastructure, by using reliable cloud storage to store the persistent state. Devising imple-
mentations that scale to heavier loads, while certainly possible, is beyond the scope of this
paper.

7 Implementation in TouchDevelop

We have realized the ideas presented in this paper and their implementation as an extension
of the web-based IDE and runtime system called TouchDevelop [30]. We implemented
the streaming model using a Azure cloud service backed by Azure table storage (for the
persistent state). Clients are written in JavaScript, run in webbrowsers, persist the local
data in HTML5 local storage (and thus remain available offline), and connect to the service
using websockets.

Rather than a basic key-value store data model, the TouchDevelop language supports
full cloud types [6, 15] which include tables, indices, and records. We describe the cloud
types data model and prove optimal reduction in the extended technical report [12].
For illustration, we give a few examples of TouchDevelop apps that use cloud types below:
feel free to run them, inspect and edit their code, and create your own variations! The first
two examples below have been contributed by our user community. In all of these examples,
the use of cloud types is very simple, with the exception of the Cloud Game Selector which
involves tricky synchronization and a flush operation.

Relatd [sic] (http://tdev.ly/ruef) Lets users enter their qualities (either from a list, or
freely entered) and finds and displays other users that share them.
Chatter Box (http://tdev.ly/spji) A chat application.
TouchDevelop Jr. (http://tdev.ly/vkrpa) Program a tiny robot using a simple lan-
guage, then share your scripts with other users.
Instant Poll (http://tdev.ly/nggfa) An app for quickly polling an audience and dis-
playing the responses as a grid of colors.
Expense Recorder (http://tdev.ly/nvoha) Allows easy recording of expenses in a table.
Contest Voting (http://tdev.ly/etww) Used to determine the winner of the “Touch of
Summer” coding contest.
Cloud List (http://tdev.ly/blqz) A general-purpose list that can be concurrently edited.
Cloud Game Selector (http://tdev.ly/nvjh) A library for matching multiple players
to play games together.

http://tdev.ly/ruef
http://tdev.ly/spji
http://tdev.ly/vkrpa
http://tdev.ly/nggfa
http://tdev.ly/nvoha
http://tdev.ly/etww
http://tdev.ly/blqz
http://tdev.ly/nvjh

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1019

Cloud Paper Scissors (http://tdev.ly/sxjua) A simple rock/paper/scissors game that
uses the cloud game selector library.

Other researchers have also experimented with refactoring non-cloud data in TD scripts
into cloud types. A formative study shows that refactoring is applicable, relevant, and saves
human effort [19].

8 Related Work

Eventual Consistency is motivated by the impossibility of achieving strong consistency, avail-
ability, and partition tolerance at the same time, as stated by the CAP theorem [18]. EC
across the literature uses a variety of techniques to propagate updates (e.g. general causally-
ordered broadcast [24, 26]). For a general high-level comparison of eventual consistency
notions appearing in the literature, see [4, 7, 9].

Bayou’s weakly consistent replication [29] follows a similar overall system design. How-
ever, it does not articulate an abstract reference model like GSP, or a data model. Conflicts
are not resolved simply by ordering updates, but require explicit merge functions provided
by the user.

As explained earlier, our Global Sequence Protocol (GSP) is an adaptation of a reliable
total order broadcast [13, 17]. However, we go beyond prior work on broadcast, as we artic-
ulate the concept of a data model, describe how to reduce updates, and discuss optimality
of reduction.

A version of core GSP supporting arbitrary replicated data types appears in [9], but
without synchronization, transactions, or a robust implementation.

As explained in Section 4.3, GSP is similar, but not equivalent to the TSO memory
model. In particular, GSP allows data to be read and updated offline without requiring
communication. We could call GSP “the TSO for distributed systems”. Neither TSO, nor
any other memory consistency model we know of, allows arbitrary data models like GSP, or
provides transactional synchronization via push and pull.

Just like our work, replicated data types and in particular CRDTs [8, 24, 24] provide
optimized distributed protocols for certain data types. However, CRDTs are not easy to
customize and compose, since the consistency protocol is not cleanly separated from the
data model as in GSP, but specialized for a particular, fixed data type.

As explained earlier, the original work on cloud types [6, 15], while providing a compre-
hensive, composable way to define replicated structured data, falls short of providing either
a simple reference model or a robust implementation.

The Jupiter system [22] has a similar system structure (client-server with bidirectional
streaming) as our streaming model. However, it uses an operational transformation (OT)
algorithm to transform conflicting updates with respect to each other, instead of simply
ordering updates sequentially as in GSP.

The OT approach [14, 25–27] provides an interesting and powerful (but arguably also
somewhat confusing and error-prone [20]) conflict resolution mechanism that has seen suc-
cessful application and even industrial adoption for collaborative editing applications. How-
ever, it comes at the expense of scalability. OT transformations grow quadratically with the
number of concurrent updates, and prevent extended offline operation since that requires
storing and later processing of update sequences.

In our situation, all the example applications used structured data that was entirely
expressible using cloud types, which by design avoid the need for OT. Thus, we were not

ECOOP’15

http://tdev.ly/sxjua

1020 Global Sequence Protocol

inclined to pay the price for providing operational transformations as part of our data model
(but may revise this choice in the future).

9 Conclusion

We have motivated, defined, and explained the global sequence protocol (GSP), a simple op-
erational reference model for replicated, eventually consistent shared data. We then showed
how to implement it, presenting a robust streaming implementation that can hide network,
server, and client failures, and reduces update sequences, while conforming to the GSP
reference model.

Both GSP and the streaming implementation are parameterized by an abstract data
model, and thus apply to a wide range of data types from simple key-value stores to the full
cloud types model.

We hope that our work provides a path for simpler development of distributed applica-
tions on mobile devices. In the future, we would like to further investigate the layering of
data abstractions and how to best support user-defined data models. We are also consid-
ering more work on the refinement proof, such as obtaining a mechanically verified proof,
and/or adding fairness and liveness. Finally, we are working on extending GSP to partial
replication scenarios.

10 Acknowledgments

We would like to thank Alexey Gotsman for interesting discussions on the GSP consistency
model, and Adam Morrison for pointing out a mistake we made in our reasoning when
comparing GSP to TSO in an earlier version of this paper.

References
[1] IEEE Computer CAP retrospective edition. Computer, 45 (2), 2012.
[2] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput. Sci.,

82 (2), 1991.
[3] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. Hellerstein, and I. Stoica. Highly avail-

able transactions: Virtues and limitations. In International Conference on Very Large
Databases (VLDB), 2014.

[4] P. Bernstein and S. Das. Rethinking eventual consistency. In SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 923–928. ACM, 2013.

[5] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC’00, 2000.
[6] S. Burckhardt, M. Fähndrich, D. Leijen, and B. Wood. Cloud types for eventual consist-

ency. In European Conference on Object-Oriented Programming (ECOOP), volume 7313
of LNCS, pages 283–307. Springer, 2012a.

[7] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual consistency. Technical
Report MSR-TR-2013-39, Microsoft, 2013.

[8] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data types: Specifica-
tion, verification, optimality. In Principles of Programming Languages (POPL), 2014a.

[9] Sebastian Burckhardt. Principles of eventual consistency. Foundations and Trends in
Programming Languages, 1 (1-2): 1–150, 2014.

[10] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Mooly Sagiv. Eventually
Consistent Transactions. In European Symposium on Programming (ESOP), (extended
version available as Microsoft Tech Report MSR-TR-2011-117), LNCS, volume 7211, pages
64–83, 2012b.

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich 1021

[11] Sebastian Burckhardt, Daan Leijen, and Manuel Fähndrich. Cloud types: Robust abstrac-
tions for replicated shared state. Technical Report MSR-TR-2014-43, Microsoft Research,
March 2014b. URL http://research.microsoft.com/apps/pubs/default.aspx?id=211340.

[12] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich.
Global sequence protocol: A robust abstraction for replicated shared state.
Technical Report MSR-TR-2015-11, Microsoft Research, April 2015. URL
http://research.microsoft.com/apps/pubs/default.aspx?id=240462. Extended version.

[13] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

[14] M. Cart and J. Ferrie. Asynchronous reconciliation based on operational transformation
for p2p collaborative environments. In Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom 2007), pages 127–138, Nov 2007.

[15] Tim Coppieters, Laure Philips, Wolfgang De Meuter, and Tom Van Cutsem. An open
implementation of cloud types for the web. In Proceedings of the First Workshop on
Principles and Practice of Eventual Consistency, PaPEC ’14, pages 2:1–2:2, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2716-9. doi:10.1145/2596631.2596640.

[16] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivas-
ubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available key-
value store. In Symposium on Operating Systems Principles, pages 205–220, 2007.
doi:10.1145/1294261.1294281.

[17] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Comput. Surv., 36 (4): 372–421, December 2004.

[18] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33: 51–59, June 2002. ISSN 0163-5700.
doi:http://doi.acm.org/10.1145/564585.564601.

[19] M. Hilton, A. Christi, D. Dig, M. Moskal, S. Burckhardt, and N. Tillmann. Refactoring
local to cloud data types for mobile apps. In MobileSoft ’14. ACM, 2014.

[20] A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design and verification of oper-
ational transformation algorithms for copies convergence. Theoretical Computer Science,
351: 167–183, 2006. doi:10.1016/j.tcs.2005.09.066.

[21] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don‘t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In
SOSP’11, 2011.

[22] D. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-latency, low-bandwidth windowing
in the jupiter collaboration system. In User interface and software technology (UIST),
1995.

[23] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A comprehensive study of con-
vergent and commutative replicated data types. Technical Report Rapport de recherche
7506, INRIA, 2011a.

[24] Mark Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replic-
ated data types. In 13th Int. Symp. on Stabilization, Safety, and Security of Distributed
Systems (SSS), Grenoble, France, October 2011b.

[25] M. Suleiman, M. Cart, and J. Ferrié. Serialization of concurrent operations in a distributed
collaborative environment. In Conference on Supporting Group Work, GROUP ’97, pages
435–445. ACM, 1997.

[26] C. Sun and C. Ellis. Operational transformation in real-time group editors: Issues, al-
gorithms, and achievements. In Computer Supported Cooperative Work, CSCW ’98, pages
59–68. ACM, 1998.

ECOOP’15

http://research.microsoft.com/apps/pubs/default.aspx?id=211340
http://research.microsoft.com/apps/pubs/default.aspx?id=240462
http://dx.doi.org/10.1145/2596631.2596640
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/http://doi.acm.org/10.1145/564585.564601
http://dx.doi.org/10.1016/j.tcs.2005.09.066

1022

[27] D. Sun and C. Sun. Operation context and context-based operational transformation. In
Conference on Computer Supported Cooperative Work, CSCW ’06, pages 279–288. ACM,
2006.

[28] D. Terry, A. Demers, K. Petersen, M. Spreitzer M. Theimer, and B. Welch. Session
guarantees for weakly consistent replicated data. In PDIS, 1994.

[29] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser.
Managing update conflicts in bayou, a weakly connected replicated storage sys-
tem. SIGOPS Oper. Syst. Rev., 29: 172–182, December 1995. ISSN 0163-5980.
doi:http://doi.acm.org/10.1145/224057.224070.

[30] N. Tillmann, M. Moskal, J. de Halleux, and M. Fähndrich. Touchdevelop: Program-
ming cloud-connected mobile devices via touchscreen. In ONWARD ’11 at SPLASH (also
available as Microsoft TechReport MSR-TR-2011-49), 2011.

[31] D. Weaver and T. Germond, editors. The SPARC Architecture Manual Version 9. PTR
Prentice Hall, 1994.

Created with Madoko.net.

http://dx.doi.org/http://doi.acm.org/10.1145/224057.224070
https://www.madoko.net

	Introduction
	[elem=h2,id=sec-intro,label=[1]{.heading-label},toc=,starform=false,data-line=88;intro.mdk:1,caption=Introduction,bookmark=Introduction]Introduction

	Overview
	[elem=h2,id=sec-overview,label=[2]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:1,caption=Overview,bookmark=Overview]Overview

	Data Models
	[elem=h2,id=sec-datamodels,label=[3]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:34,caption=Data Models,bookmark=Data Models]Data Models
	Examples
	[elem=h3,id=sec-examples,label=[3.1]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:63,caption=Examples,bookmark=Examples]Examples

	Core GSP
	[elem=h2,id=sec-core-gsp,label=[4]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:104,caption=Core GSP,bookmark=Core GSP]Core GSP
	Beware Consistency
	[elem=h3,id=sec-beware-consistency,label=[4.1]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:210,caption=Beware Consistency,bookmark=Beware Consistency]Beware Consistency

	Cloud Types
	[elem=h3,id=sec-cloud-types,label=[4.2]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:245,caption=Cloud Types,bookmark=Cloud Types]Cloud Types

	Eventual Consistency
	[elem=h3,id=sec-ec,label=[4.3]{.heading-label},toc=,starform=false,data-line=89;overview.mdk:270,caption=Eventual Consistency,bookmark=Eventual Consistency]Eventual Consistency

	Transactional GSP
	[elem=h2,id=sec-trans-gsp,label=[5]{.heading-label},toc=,starform=false,data-line=90;model.mdk:1,caption=Transactional GSP,bookmark=Transactional GSP]Transactional GSP
	Discussion
	[elem=h3,id=sec-discussion,label=[5.1]{.heading-label},toc=,starform=false,data-line=90;model.mdk:95,caption=Discussion,bookmark=Discussion]Discussion

	Robust Streaming
	[elem=h2,id=sec-streaming,label=[6]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:1,caption=Robust Streaming,bookmark=Robust Streaming]Robust Streaming
	States and Deltas
	[elem=h3,id=sec-deltas,label=[6.1]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:39,caption=States and Deltas,bookmark=States and Deltas]States and Deltas

	Channels
	[elem=h3,id=sec-channels,label=[6.2]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:115,caption=Channels,bookmark=Channels]Channels

	Server
	[elem=h3,id=sec-server,label=[6.3]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:176,caption=Server,bookmark=Server]Server

	Client
	[elem=h3,id=sec-client,label=[6.4]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:243,caption=Client,bookmark=Client]Client

	Refinement Proof
	[elem=h3,id=sec-refinement-proof,label=[6.5]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:394,caption=Refinement Proof,bookmark=Refinement Proof]Refinement Proof
	Proof structure
	[elem=h4,id=sec-simmethod,label=[6.5.1]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:477,caption=Proof structure,bookmark=Proof structure]Proof structure

	Further optimizations
	[elem=h3,id=sec-further-optimizations,label=[6.6]{.heading-label},toc=,starform=false,data-line=91;stream.mdk:535,caption=Further optimizations,bookmark=Further optimizations]Further optimizations

	Implementation in TouchDevelop
	[elem=h2,id=sec-touchdevelop,label=[7]{.heading-label},toc=,starform=false,data-line=92;touchdevelop.mdk:1,caption=Implementation in TouchDevelop,bookmark=Implementation in TouchDevelop]Implementation in TouchDevelop

	Related Work
	[elem=h2,id=sec-related,label=[8]{.heading-label},toc=,starform=false,data-line=93;related.mdk:1,caption=Related Work,bookmark=Related Work]Related Work

	Conclusion
	[elem=h2,id=sec-conclusion,label=[9]{.heading-label},toc=,starform=false,data-line=95,caption=Conclusion,bookmark=Conclusion]Conclusion

	Acknowledgments
	[elem=h2,id=sec-acknowledgments,label=[10]{.heading-label},toc=,starform=false,data-line=116,caption=Acknowledgments,bookmark=Acknowledgments]Acknowledgments

